|Table of Contents|

[1] Zhang Xiaohui, Wang Shuanhong,. Construction of semisimple categoryover generalized Yetter-Drinfeld modules [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 467-469. [doi:10.3969/j.issn.1003-7985.2013.04.021]
Copy

Construction of semisimple categoryover generalized Yetter-Drinfeld modules()
广义Yetter-Drinfeld模上半单范畴的构造
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
467-469
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2013-12-20

Info

Title:
Construction of semisimple categoryover generalized Yetter-Drinfeld modules
广义Yetter-Drinfeld模上半单范畴的构造
Author(s):
Zhang Xiaohui Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
张晓辉 王栓宏
东南大学数学系, 南京 211189
Keywords:
semisimple Hopf algebra semisimple category generalized Yetter-Drinfeld module
半单Hopf代数 半单范畴 广义Yetter-Drinfeld模
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2013.04.021
Abstract:
Let H be a commutative, noetherian, semisimple and cosemisimple Hopf algebra with a bijective antipode over a field k. Then the semisimplicity of YD(H)is considered, where YD(H)means the disjoint union of the category of generalized Yetter-Drinfeld modules HHYDHH(α, β)for any α, β∈AutHopf(H). First, the fact that YD(H)is closed under Mor is proved. Secondly, based on the properties of finitely generated projective modules and semisimplicity of H, YD(H)satisfies the exact condition. Thus each object in YD(H)can be decomposed into simple ones since H is noetherian and cosemisimple. Finally, it is proved that YD(H)is a semisimple category.
H是域k上的可换、诺特、半单、余半单的Hopf代数, 且具有双射对极. 考虑了其上YD(H)范畴的半单性, 其中YD(H)是H上的广义Yetter-Drinfeld模范畴HHYDHH(α, β)(其中α, β∈AutHopf(H))的无交并. 首先证明了YD(H)是一个对态射集封闭的范畴;然后利用有限生成投射模的性质和H的半单性, 可得YD(H)是满足正合性条件的;进而由H是诺特、余半单的Hopf代数, 得到YD(H)中的对象都可分解为单对象的直和.最终得到YD(H)是一个半单范畴.

References:

[1] Panaite F, Staic M D. Generalized(anti)Yetter-Drinfeld modules as components of a braided T-category [J]. Israel J Math, 2007, 158(1): 349-365.
[2] Liu L, Wang S H. Constructing new braided T-categories over weak Hopf algebras [J]. Appl Categor Struct, 2010, 18(4): 431-459.
[3] Turaev V. Homotopy quantum field theory [M]. Bloomington: European Mathematical Society, 2010.
[4] Etingof P, Nikshych D, Ostrik V. On fusion categories [J]. Annals of Mathematics, 2005, 162(2): 581-642.
[5] Drinfeld V, Gelaki S, Nikshych D, Ostrik V. On braided fusion categories Ⅰ [J]. Selecta Mathematica, 2010, 16(1): 1-119.
[6] Naidu D, Rowell E. A finiteness property for braided fusion categories [J]. Algebr Represent Theor, 2011, 14(5): 837-855.
[7] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.
[8] Montgomery S. Hopf algebras and their actions on rings [M]. Rhode Island: American Mathematical Society, 1993.

Memo

Memo:
Biographies: Zhang Xiaohui(1985—), male, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang2002@yahoo.com.
Foundation items: The National Natural Science Foundation of China(No.11371088), the Fundamental Research Funds for the Central Universities(No.3207013906), the Natural Science Foundation of Jiangsu Province(No.BK2012736).
Citation: Zhang Xiaohui, Wang Shuanhong. Construction of semisimple category over generalized Yetter-Drinfeld modules[J].Journal of Southeast University(English Edition), 2013, 29(4):467-469.[doi:10.3969/j.issn.1003-7985.2013.04.021]
Last Update: 2013-12-20