[1] Dellaert F, Polzin T, Waibel A. Recognizing emotion in speech[C]//International Conference on Spoken Language. Philadelphia, PA, USA, 1996, 3: 1970-1973.
[2] Ververidis D, Kotropoulos C. Emotional speech recognition: resources, features, and methods[J]. Speech Communication, 2006, 48(9): 1162-1181.
[3] Schuller B, Rigoll G. Timing levels in segment-based speech emotion recognition[C]//International Conference on Spoken Language. Pittsburgh, PA, USA, 2006: 1818-1821.
[4] Oudeyer P. The production and recognition of emotions in speech: features and algorithms[J]. International Journal of Human-Computer Studies, 2003, 59(1/2): 157-183.
[5] Tato R, Santos R, Kompe R, et al. Emotional space improves emotion recognition[C]//International Conference on Spoken Language. Denver, CO, USA, 2002: 2029-2032.
[6] Zhang S Q, Zhao X M, Lei B C. Speech emotion recognition using an enhanced kernel Isomap for human-robot interaction[J]. International Journal of Advanced Robotic Systems, 2013, 10: 114-01-114-07.
[7] You M Y, Chen C, Bu J J, et al. Emotional speech analysis on nonlinear manifold[C]//International Conference on Pattern Recognition. Hong Kong, China, 2006, 3: 91-94.
[8] Ayadi M, Kamel M, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases[J]. Pattern Recognition, 2011, 44(3): 572-587.
[9] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[10] Tenenbaum J, de Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[11] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Advances in Neutral Information Processing Systems 14. Whistler, British Columbia, Canada, 2002: 585-591.
[12] He X F, Niyogi P. Locality preserving projections[C]//Advances in Neural Information Processing Systems 15. Whistler, British Columbia, Canada, 2003: 153-160.
[13] Wang R P, Shan S G, Chen X L, et al. Maximal linear embedding for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1776-1792.
[14] Cai H P, Mikolajczyk K, Matas J. Learning linear discriminant projections for dimensionality reduction of image descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 338-352.
[15] Yan S C, Xu D, Zhang B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
[16] De la Torre F. A least-squares framework for component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6): 1041-1055.
[17] Cai D, He X F. Semi-supervised discriminant analysis[C]//International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-7.
[18] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. Cambridge, UK: Cambridge University Press, 2004.