|Table of Contents|

[1] Yan Fangrong, , Zhang Ping, et al. Bayesian analysis for mixed-effects modeldefined by stochastic differential equations [J]. Journal of Southeast University (English Edition), 2014, 30 (1): 122-127. [doi:10.3969/j.issn.1003-7985.2014.01.023]
Copy

Bayesian analysis for mixed-effects modeldefined by stochastic differential equations()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 1
Page:
122-127
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2014-03-31

Info

Title:
Bayesian analysis for mixed-effects modeldefined by stochastic differential equations
Author(s):
Yan Fangrong1 2 4 Zhang Ping2 4 Lu Tao3 4 Lin Jinguan1
1Department of Mathematics, Southeast University, Nanjing 210096, China
2Department of Mathematics, China Pharmaceutical University, Nanjing 210009, China
3Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
4State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
Keywords:
population pharmacokinetics mixed-effects models stochastic differential equations Bayesian analysis
PACS:
O212
DOI:
10.3969/j.issn.1003-7985.2014.01.023
Abstract:
The nonlinear mixed-effects model with stochastic differential equations(SDEs)is used to model the population pharmacokinetic(PPK)data that are extended from ordinary differential equations(ODEs)by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.

References:

[1] Aarons L, Karlsson M O, Mentré F, et al. Role of modelling and simulation in Phase I drug development[J]. European Journal of Pharmaceutical Sciences, 2001, 13(2): 115-122.
[2] Sheiner L B, Steimer J L. Pharmacokinetic/pharmacodynamic modeling in drug development[J]. Annual Reviews of Pharmacology and Toxicology, 2000, 40:67-95.
[3] Karlsson M O, Jonsson E N, Wiltse C G, et al. Assumption testing in population pharmacokinetic models: illustrated with an analysis of Moxonidine data from congestive heart failure patients [J]. Journal of Pharmacokinetics and Pharmacodynamics, 1998, 26(2):207-246.
[4] Karlsson M O, Beal S L, Sheiner L B. Three new residual error models for population PK/PD analyses [J]. Journal of Pharmacokinetics and Pharmacodynamics, 1995, 23(6):651-672.
[5] Kristensen N R, Madsen H, Ingwersen S H. Using stochastic differential equations for PK/PD model development [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2005, 32(1):109-141.
[6] Krishna R. Applications of pharmacokinetic principles in drug development [M]. Springer, 2004: 166-257.
[7] Kristensen N R, Madsenb H, Jørgensena S B. Parameter estimation in stochastic grey-box models[J]. Automatica, 2004, 40(2):225-237.
[8] Overgaard R V, Jonsson N, Tornøe C W, et al. Nonlinear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm[J]. Journal of Pharmacokinetics and Pharmacodynamics, 2005, 32(1):85-107.
[9] Tornøe C W, Overgaard R V, Agersø H, et al. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations[J]. Pharmaceutical Research, 2005, 22(8):1247-1258.
[10] Donnet S, Foulley J L, Samson A. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations[J]. Biometrics, 2010, 66(3):733-741.
[11] Struthers C A, Mcleish D L. A particular diffusion model for incomplete longitudinal data:application to the multicenter ADIS cohort study[J]. Biostatistics, 2011, 12(3):493-505.
[12] De la Cruz-Mesía R, Marshall G. Nonlinear random effects models with continuous time autoregressive errors: a Bayesian approach[J]. Statistics in Medicine, 2005, 25(9):1471-1484.
[13] Carlin B P, Louis T A. Bayes and empirical Bayes methods for data analysis [M]. Chapman and Hall/CRC, 2000: 378-390.
[14] Carlin B P, Louis T A. Bayes and empirical Bayes methods for data analysis[J]. Statistics and Computing, 1997, 7(2):153-154.
[15] Mengersen K L, Tweedie R L. Rates of convergence of the Hastings and Metropolis algorithms[J]. Annals of Statistics, 1996, 24(1):101-121.
[16] Polli J E, Rekhi G S, Augsburger L L, et al. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets[J]. Journal of Pharmaceutical Sciences, 1997, 86(6):690-700.
[17] Lánský P, Weiss M. Classification of dissolution profiles in terms of fractional dissolution rate and a novel measure of heterogeneity[J]. Journal of Pharmaceutical Sciences, 2003, 92(8):1632-1647.
[18] Lánský P, Lánskác V, Weissd M. A stochastic differential equation model for drug dissolution and its parameters[J]. Journal of Controlled Release, 2004, 100(2):267-274.

Memo

Memo:
Biographies: Yan Fangrong(1978—), male, doctor; Lin Jinguan(corresponding author), male, professor, jglin@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11171065, 81130068), the Natural Science Foundation of Jiangsu Province(No.BK2011058), the Fundamental Research Funds for the Central Universities(No.JKPZ2013015).
Citation: Yan Fangrong, Zhang Ping, Lu Tao, et al.Bayesian analysis for mixed-effects model defined by stochastic differential equations[J].Journal of Southeast University(English Edition), 2014, 30(1):122-127.[doi:10.3969/j.issn.1003-7985.2014.01.023]
Last Update: 2014-03-20