|Table of Contents|

[1] Zhou Zhengdong, Chen Yuanhua, Wang Dongdong, Yu Zili, et al. Reconstruction of the linac photon spectrumbased on prior knowledge and the genetic algorithm [J]. Journal of Southeast University (English Edition), 2014, 30 (3): 311-314. [doi:10.3969/j.issn.1003-7985.2014.03.010]
Copy

Reconstruction of the linac photon spectrumbased on prior knowledge and the genetic algorithm()
基于先验知识和遗传算法的直线加速器光子能谱重建
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 3
Page:
311-314
Research Field:
Computer Science and Engineering
Publishing date:
2014-09-30

Info

Title:
Reconstruction of the linac photon spectrumbased on prior knowledge and the genetic algorithm
基于先验知识和遗传算法的直线加速器光子能谱重建
Author(s):
Zhou Zhengdong Chen Yuanhua Wang Dongdong Yu Zili
Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
周正东 陈元华 王东东 余子丽
南京航空航天大学核科学与工程系, 南京 210016
Keywords:
reconstruction of the photon spectrum prior knowledge genetic algorithm(GA) percent depth dose(PDD) Monte Carlo simulation
光子能谱重建 先验知识 遗传算法 百分深度剂量 蒙特卡洛模拟
PACS:
TP391;R318
DOI:
10.3969/j.issn.1003-7985.2014.03.010
Abstract:
In order to derive the linac photon spectrum accurately, both the prior constrained model and the genetic algorithm(GA)are employed using the measured percentage depth dose(PDD)data and the Monte Carlo simulated monoenergetic PDDs, where two steps are involved. First, the spectrum is modeled as a prior analytical function with two parameters α and Ep optimized with the GA. Secondly, the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step. The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams. The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.
为了准确地获得直线加速器的光子能谱, 根据测量的百分深度剂量和蒙特卡洛模拟的单能光子百分深度剂量, 采用先验约束模型和遗传算法来进行优化求解.首先, 将光子能谱建模为一个包含2个参数αEp的先验解析函数, 采用遗传算法对该模型进行优化求解;然后, 将光子能谱建模为一个离散约束优化模型, 并利用遗传算法进行优化求解, 初始解由第1步获得的解析函数产生.将该方法应用于瓦里安iX直线加速器来计算其6和15MV光子束的能谱, 实验结果表明, 采用该方法重建获得的光子能谱以及百分深度剂量与蒙特卡洛模拟计算的结果具有良好的一致性.

References:

[1] Mohan R, Chui C, Lidofsky L. Energy and angular distributions of photons from medical linear accelerators[J]. Med Phys, 1985, 12(5): 592-597.
[2] Sheikh-Bagheri D, Rogers D W O. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code[J]. Med Phys, 2002, 29(3):391-402.
[3] Ahnesjö A, Andreo P. Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations[J]. Phys Med Biol, 1989, 34(10):1451-1464.
[4] Sauer O, Neumann M. Reconstruction of high-energy bremsstrahlung spectra by numerical analysis of depth-dose data[J]. Radiother Oncol, 1990, 18(1):39-47.
[5] Bloch P, Altschuler M D, Bjarngard B E, et al. Determining clinical photon beam spectra from measured depth dose with the Cimmino algorithm[J]. Phys Med Biol, 2000, 45(1):171-183.
[6] Deng J, Jiang S B, Pawlicki T, et al. Derivation of electron and photon energy spectra from electron beam central axis depth dose curves[J]. Phys Med Biol, 2001, 46(5):1429-1449.
[7] Paniak L D, Charland P M. Enhanced bremsstrahlung spectrum reconstruction from depth-dose gradients[J]. Phys Med Biol, 2005, 50(14):3245-3261.
[8] Ali E S M, McEwen M R, Rogers D W O. Beyond self-consistency in beam commissioning: determination of true linac spectra[J]. Med Phys, 2011, 38(6):3870-3871.
[9] Armbruster B, Hamilton R J, Kuehl A K. Spectrum reconstruction from dose measurements as a linear inverse problem[J]. Phys Med Biol, 2004, 49(22):5087-5099.
[10] Delgado V. Determination of x-ray spectra from attenuation data by imposing a priori positiveness and bounded support: theory and experimental validation[J]. Med Phys, 2007, 34(3):994-1006.
[11] Delgado V. Determination of x-ray spectra from Al attenuation data by imposing a priori physical features of the spectrum: Theory and experimental validation[J]. Med Phys, 2009, 36(1):142-148.
[12] Ali E S M, Rogers D W O. An improved physics-based approach for unfolding megavoltage bremsstrahlung spectra using transmission analysis[J]. Med Phys, 2012, 39(3):1663-1675.
[13] Zhou Zhengdong, Chen Yuanhua, Liu Juan. Reconstruction method of photon spectra of medical linear accelerator based on genetic algorithm[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(6):1085-1088.(in Chinese)
[14] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. New York: Addison-Wesley, 1989.
[15] Togan V, Daloglu A T. An improved genetic algorithm with initial population strategy and self-adaptive member grouping[J]. Computers & Structures, 2008, 86(11/12):1204-1218.
[16] Rahnamayan S, Tizhoosh H, Salama M. A novel population initialization method for accelerating evolutionary algorithms[J]. Computers & Mathematics with Applications, 2007, 53(10):1605-1614.
[17] Maaranen H, Miettinen K, Penttinen A. On initial populations of a genetic algorithm for continuous optimization problems[J]. Journal of Glob Optim, 2007, 37(3):405-436.
[18] Maaranen H, Miettinen K, Mäkelä M M. Quasi-random initial population for genetic algorithms[J]. Computers & Mathematics with Applications, 2004, 47(12):1885-1895.
[19] Ali E S M, Rogers D W O. Functional forms for photon spectra of clinical linacs[J]. Phys Med Biol, 2012, 57(1):31-50.

Memo

Memo:
Biography: Zhou Zhengdong(1969—), male, doctor, associate professor, zzd-msc@nuaa.edu.cn.
Citation: Zhou Zhengdong, Chen Yuanhua, Wang Dongdong, et al. Reconstruction of the linac photon spectrum based on prior knowledge and the genetic algorithm[J].Journal of Southeast University(English Edition), 2014, 30(3):311-314.[doi:10.3969/j.issn.1003-7985.2014.03.010]
Last Update: 2014-09-20