[1] Hong K N, Kang S T, Kim S W, et al. Material properties of air-cured ultra-high-performance steel-fiber-reinforced concrete at early ages[J]. International Journal of the Physical Sciences, 2010, 5(17): 2622-2634.
[2] Graybeal B. Ultra-high performance concrete, FHWA-HRT-11-038 [R]. Mclean, VA, USA: Federal Highway Administration, 2011.
[3] Yang S, Millard S, Soutsos M, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete(UHPFRC)[J]. Construction and Building Materials, 2009, 23(6): 2291-2298.
[4] Yazici H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures [J]. Building and Environment, 2007, 42(5): 2083-2089.
[5] Habel K, Viviani M, Denarié E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete(UHPFRC)[J]. Cement and Concrete Research, 2006, 36(7): 1362-1370.
[6] Nordtest. Concrete hardened: accelerated chloride penetration, NT Build 443 [R]. Espoo, Finland: Nordtest, 1995.
[7] Zhang Y S, Sun W, Chen S D, et al. One and two dimensional chloride ion diffusion of fly ash concrete under flexural stress [J]. Journal of Zhejiang University: SCIENCE A, 2011, 12(9): 692-701.
[8] Habel K, Charron J P, Braike S, et al. Ultra-high performance fibre reinforced concrete mix design in central Canada [J]. Canadian Journal of Civil Engineering, 2008, 35(2): 217-224.
[9] Abell A B, Willis K L, Lange D A. Mercury intrusion porosimetry and image analysis of cement-based materials [J]. Journal of Colloid and Interface Science, 1999, 211(1):39-44.