[1] Miller R B. A new strapdown attitude algorithm [J]. Journal of Guidance, Control, and Dynamics, 1983, 6(4): 287-291.
[2] Lee J G, Mark J G, Tazartes D A, et al. Extension of strapdown attitude algorithm for high-frequency base motion [J]. Journal of Guidance, Control, and Dynamics, 1990, 13(4): 738-743.
[3] Ignagni M B. Efficient class of optimized coning compensation algorithms [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 424-429.
[4] Mark J G, Tazartes D A. Tuning of coning algorithms to gyro data frequency response characteristics [J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 641-647.
[5] Savage P G. Coning algorithm design by explicit frequency shaping [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1123-1132.
[6] Savage P G. Explicit frequency shaped coning algorithms for pseudoconing environments [J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 774-782.
[7] Tang C Y, Chen X Y, Li J L. Coning algorithm design for angular rate inputs [J]. Journal of Chinese Inertial Technology, 2013, 21(4): 456-461.(in Chinese)
[8] Tang C Y, Chen X Y. An angular rate input attitude algorithm in SINS [J]. Journal of Southeast University: Natural Science Edition, 2014, 44(3): 544-549.(in Chinese)
[9] Tang C Y, Chen X Y. A generalized coning correction structure for attitude algorithms [J]. Mathematical Problems in Engineering, 2014, 2014: 1-15.
[10] Chen J F, Chen X Y, Zhu X F. An improved coning algorithm based on second optimization [J]. Journal of Chinese Inertial Technology, 2012, 20(2): 131-135.(in Chinese)
[11] Song M, Wu W Q, Pan X F. Approach to recovering maneuver accuracy in classical coning algorithms [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1872-1881.
[12] Tang C Y, Chen X Y. A class of coning algorithms based on a half-compressed structure [J]. Sensors, 2014, 14(8): 14289-14301.