[1] Lasheras A, Ströhle J, Galloy A, et al. Carbonate looping process simulation using a 1D fluidized bed model for the carbonator[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 686-693.
[2] Zhao M, Andrew I M, Harris T. Review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture(PCC)of CO2[J]. Energy and Environmental Science, 2013, 6(1): 25-40.
[3] MacKenzie A, Granatstein D L, Anthony E J, et al. Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor[J]. Energy and Fuels, 2007, 21(2): 920-926.
[4] Martínez I, Murillo R, Grasa G, et al. Integration of a Ca looping system for CO2 capture in existing power plants[J]. Aiche Journal, 2011, 57(9): 2599-2607.
[5] Ariasa B, Diegoa M E, Abanades J C. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245.
[6] Myöhänen K, Hyppänen T, Pikkarainen T, et al. Near zero CO2 emissions in coal firing with oxyfuel CFB boiler[J]. Chemical Engineering and Technology, 2009, 32(3): 355-363.
[7] Krishnan S V, Sotirchos S V. Effective diffusivity changes during calcination, carbonation, recalcination, and sulfation of limestones[J]. Chemical Engineering Science, 1994, 49(8): 1195-1208.
[8] Stanmore B R, Gilot P. Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration[J]. Fuel Process Technology, 2005, 86(16): 1707-1743.
[9] Cheng L M, Chen B, Liu N, et al. Effect of characteristic of sorbents on their sulfur capture capability at a fluidized bed condition[J]. Fuel, 2004, 83(7/8): 925-932.
[10] Laursen K, Duo W, Grace J R, et al. Sulfation and reactivation characteristics of nine limestones[J]. Fuel, 2000, 79(2): 153-163.
[11] Ryu H J, Grace J R, Lim C J. Simultaneous CO2/SO2 characteristics of three limestones in a fluidized-bed reactor[J]. Energy and Fuels, 2006, 20(4): 1621-1628.
[12] Sun P, Grace J R, Lim C J, et al. Removal of CO2 by calcium-based sorbents in the presence of SO2[J]. Energy and Fuels, 2007, 21(1): 163-170.
[13] Sun P, Grace J R, Lim C J, et al. Simultaneous CO2 and SO2 capture at fluidized bed combustion temperatures[C]//18th International Conference on Fluidized Bed Combustion. Toronto, Canada, 2005:22-25.
[14] Basinas P, Wu Yinghai, Grammelis P, et al. Effect of pressure and gas concentration on CO2 and SO2 capture performance of limestones[J]. Fuel, 2014, 122: 236-246.
[15] Coppola A, Scala F, Salatino P, et al. Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcinations conditions: Part 1. Assessment of six limestones[J]. Chemical Engineering Journal, 2013, 231: 537-543.
[16] Coppola A, Montagnaro F, Salatino P, et al. Fluidized bed calcium looping: the effect of SO2 on sorbent attrition and CO2 capture capacity[J]. Chemical Engineering Journal, 2012, 207/208: 445-449.
[17] Ridha F N, Manovic V, Macchi A, et al. The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder[J]. Applied Energy, 2012, 92: 415-420.