|Table of Contents|

[1] Zhao Xiaofan, Wang Shuanhong,. A note on ribbon elements of Hopf group-coalgebras [J]. Journal of Southeast University (English Edition), 2015, 31 (2): 294-296. [doi:10.3969/j.issn.1003-7985.2015.02.024]
Copy

A note on ribbon elements of Hopf group-coalgebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 2
Page:
294-296
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2015-06-20

Info

Title:
A note on ribbon elements of Hopf group-coalgebras
Author(s):
Zhao Xiaofan Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
quasitriangular Hopf G-coalgebra G-grouplike element ribbon element Drinfeld element
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2015.02.024
Abstract:
Let G be a discrete group with a neutral element and H be a quasitriangular Hopf G-coalgebra over a field k. Then the relationship between G-grouplike elements and ribbon elements of H is considered. First, a list of useful properties of a quasitriangular Hopf G-coalgebra and its Drinfeld elements are proved. Secondly, motivated by the relationship between the grouplike and ribbon elements of a quasitriangular Hopf algebra, a special kind of G-grouplike elements of H is defined. Finally, using the Drinfeld elements, a one-to-one correspondence between the special G-grouplike elements defined above and ribbon elements is obtained.

References:

[1] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.
[2] Montgomery S. Hopf algebras and their actions on rings [M]. Rhode Island: American Mathematical Society, 1993.
[3] Reshetikhin N Y, Turaev V G. Ribbon graphs and their invariants derived from quantum groups [J]. Comm Math Phys, 1990, 127(1): 1-26.
[4] Kauffman L H, Radford D E. A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra [J]. J Algebra, 1993, 159(1): 98-114.
[5] Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories[EB/OL].(2000)[2013-07-01].http://arxiv.org/abs/math/0005291.
[6] Virelizier A. Hopf group-coalgebras [J]. J Pure Appl Algebra, 2002, 171(1): 75-122.
[7] Virelizier A. Graded quantum groups and quasitriangular Hopf group-coalgebras [J]. Comm Algebra, 2004, 33(9): 3029-3050.
[8] Wang S H. Group entwining structures and group coalgebras Galois extensions [J]. Comm Algebra, 2004, 32(9): 3417-3436.
[9] Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras [J]. Comm Algebra, 2004, 32(9): 3437-3458.

Memo

Memo:
Biographies: Zhao Xiaofan(1986—), female, graduate; Wang shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088), the Natural Science Foundation of Jiangsu Province(No.BK2012736), the Fundamental Research Funds for the Central Universities(No.KYZZ0060).
Citation: Zhao Xiaofan, Wang Shuanhong.A note on ribbon elements of Hopf group-coalgebras[J].Journal of Southeast University(English Edition), 2015, 31(2):294-296.[doi:10.3969/j.issn.1003-7985.2015.02.024]
Last Update: 2015-06-20