[1] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.
[2] Montgomery S. Hopf algebras and their actions on rings [M]. Rhode Island: American Mathematical Society, 1993.
[3] Reshetikhin N Y, Turaev V G. Ribbon graphs and their invariants derived from quantum groups [J]. Comm Math Phys, 1990, 127(1): 1-26.
[4] Kauffman L H, Radford D E. A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra [J]. J Algebra, 1993, 159(1): 98-114.
[5] Turaev V G. Homotopy field theory in dimension 3 and crossed group-categories[EB/OL].(2000)[2013-07-01].http://arxiv.org/abs/math/0005291.
[6] Virelizier A. Hopf group-coalgebras [J]. J Pure Appl Algebra, 2002, 171(1): 75-122.
[7] Virelizier A. Graded quantum groups and quasitriangular Hopf group-coalgebras [J]. Comm Algebra, 2004, 33(9): 3029-3050.
[8] Wang S H. Group entwining structures and group coalgebras Galois extensions [J]. Comm Algebra, 2004, 32(9): 3417-3436.
[9] Wang S H. Group twisted smash products and Doi-Hopf modules for T-coalgebras [J]. Comm Algebra, 2004, 32(9): 3437-3458.