|Table of Contents|

[1] Zhu Huihui, Chen Jianlong,. Representations of the Drazin inverseinvolving idempotents in a ring [J]. Journal of Southeast University (English Edition), 2015, 31 (3): 427-430. [doi:10.3969/j.issn.1003-7985.2015.03.023]
Copy

Representations of the Drazin inverseinvolving idempotents in a ring()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 3
Page:
427-430
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2015-09-20

Info

Title:
Representations of the Drazin inverseinvolving idempotents in a ring
Author(s):
Zhu Huihui Chen Jianlong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
idempotent Drazin inverse spectral idempotent
PACS:
O151.2
DOI:
10.3969/j.issn.1003-7985.2015.03.023
Abstract:
An element a of a ring R is called Drazin invertible if there exists bR such that ab=ba, bab=b, and a-a2b is nilpotent. The element b above is unique if it exists and is denoted as aD. The equivalent conditions of the Drazin inverse involving idempotents in R are established. As applications, some formulae for the Drazin inverse of the difference and the product of idempotents in a ring are given. Hence, a number of results of bounded linear operators in Banach spaces are extended to the ring case.

References:

[1] Drazin M P. Pseudo-inverses in associative rings and semigroups [J]. Amer Math Monthly, 1958, 65(7): 506-514.
[2] Groβ J, Trenkler G. Nonsingularity of difference of two oblique projectors [J]. SIAM J Matrix Anal Appl, 1999, 21(2): 390-395.
[3] Koliha J J, Rakocevic V. Invertibility of the difference of idempotents [J]. Linear Multilinear Algebra, 2003, 50(1): 97-110.
[4] Koliha J J, Rakocevic V. Invertibility of the sum of idempotents [J]. Linear Multilinear Algebra, 2002, 50(4): 285-292.
[5] Deng C Y. The Drazin inverses of products and differences of orthgonal projections [J]. J Math Anal Appl, 2007, 355(1): 64-71.
[6] Deng C Y, Wei Y M. Characterizations and representations of the Drazin inverse involving idempotents [J]. Linear Algebra Appl, 2009, 431(9): 1526-1538.
[7] Deng C Y. Characterizations and representations of group inverse involving idempotents [J]. Linear Algebra Appl, 2011, 434(4): 1067-1079.
[8] Koliha J J, Cvetkovc-Ilic D S, Deng C Y. Generalized Drazin invertibility of combinations of idempotents [J]. Linear Algebra Appl, 2012, 437(9): 2317-2324.
[9] Zhang S F, Wu J D. The Drazin inverse of the linear combinations of two idempotents in the Banach algebra [J]. Linear Algebra Appl, 2012, 436(9): 3132-3138.
[10] Chen J L, Zhu H H. Drazin invertibility of product and difference of idempotents in a ring [J]. Filomat, 2014, 28(6): 1133-1137.
[11] Cline R E, An application of the representation for the generalized inverse of a matrix [J]. MRC Technical Report, 1965.
[12] Castro-Gonzalez N, Mendes-Araujo C, Patricio P. Generalized inverses of a sum in rings [J]. Bull Aust Math Soc, 2010, 82(1): 156-164.
[13] Li Y. The Drazin inverses of products and differences of projections in a C*-algebra [J]. J Aust Math Soc, 2009, 86(2): 189-198.
[14] Koliha J J, Rakocevic V, Straskraba I. The difference and sum of projectors [J]. Linear Algebra Appl, 2004, 388: 279-288.

Memo

Memo:
Biographies: Zhu Huihui(1985─), male, graduate; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371089), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020), the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13-072), the Scientific Research Foundation of Graduate School of Southeast University, the Fundamental Research Funds for the Central Universities(No.22420135011).
Citation: Zhu Huihui, Chen Jianlong. Representations of the Drazin inverse involving idempotents in a ring[J].Journal of Southeast University(English Edition), 2015, 31(3):427-430.[doi:10.3969/j.issn.1003-7985.2015.03.023]
Last Update: 2015-09-20