[1] Drazin M P. Pseudo-inverses in associative rings and semigroups [J]. Amer Math Monthly, 1958, 65(7): 506-514.
[2] Groβ J, Trenkler G. Nonsingularity of difference of two oblique projectors [J]. SIAM J Matrix Anal Appl, 1999, 21(2): 390-395.
[3] Koliha J J, Rakocevic V. Invertibility of the difference of idempotents [J]. Linear Multilinear Algebra, 2003, 50(1): 97-110.
[4] Koliha J J, Rakocevic V. Invertibility of the sum of idempotents [J]. Linear Multilinear Algebra, 2002, 50(4): 285-292.
[5] Deng C Y. The Drazin inverses of products and differences of orthgonal projections [J]. J Math Anal Appl, 2007, 355(1): 64-71.
[6] Deng C Y, Wei Y M. Characterizations and representations of the Drazin inverse involving idempotents [J]. Linear Algebra Appl, 2009, 431(9): 1526-1538.
[7] Deng C Y. Characterizations and representations of group inverse involving idempotents [J]. Linear Algebra Appl, 2011, 434(4): 1067-1079.
[8] Koliha J J, Cvetkovc-Ilic D S, Deng C Y. Generalized Drazin invertibility of combinations of idempotents [J]. Linear Algebra Appl, 2012, 437(9): 2317-2324.
[9] Zhang S F, Wu J D. The Drazin inverse of the linear combinations of two idempotents in the Banach algebra [J]. Linear Algebra Appl, 2012, 436(9): 3132-3138.
[10] Chen J L, Zhu H H. Drazin invertibility of product and difference of idempotents in a ring [J]. Filomat, 2014, 28(6): 1133-1137.
[11] Cline R E, An application of the representation for the generalized inverse of a matrix [J]. MRC Technical Report, 1965.
[12] Castro-Gonzalez N, Mendes-Araujo C, Patricio P. Generalized inverses of a sum in rings [J]. Bull Aust Math Soc, 2010, 82(1): 156-164.
[13] Li Y. The Drazin inverses of products and differences of projections in a C*-algebra [J]. J Aust Math Soc, 2009, 86(2): 189-198.
[14] Koliha J J, Rakocevic V, Straskraba I. The difference and sum of projectors [J]. Linear Algebra Appl, 2004, 388: 279-288.