|Table of Contents|

[1] Li Zhengquan, Wu Ming, Shen Lianfeng, Wang Zhigong, et al. Low complexity suboptimal decode algorithmsfor quasi-orthogonal space time block codes [J]. Journal of Southeast University (English Edition), 2016, 32 (1): 1-5. [doi:10.3969/j.issn.1003-7985.2016.01.001]
Copy

Low complexity suboptimal decode algorithmsfor quasi-orthogonal space time block codes()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 1
Page:
1-5
Research Field:
Information and Communication Engineering
Publishing date:
2016-03-20

Info

Title:
Low complexity suboptimal decode algorithmsfor quasi-orthogonal space time block codes
Author(s):
Li Zhengquan1 Wu Ming1 Shen Lianfeng1 Wang Zhigong2 Jia Ziyan1
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China
Keywords:
quasi-orthogonal space-time block code(QOSTBC) low-complexity decoding pairwise-quasi-ZF pairwise-quasi-MMSE bit error rate(BER)
PACS:
TN911
DOI:
10.3969/j.issn.1003-7985.2016.01.001
Abstract:
Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing(ZF)/minimum mean square error(MMSE)decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwise-quasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First, two transmit signals are detected by the quasi-ZF or the quasi-MMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate(BER)performance of the proposed algorithms is compared with that of the current known decoding algorithms. Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results show that the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasi-MMSE algorithms. The BER performance of the pairwise-quasi-ZF(pairwise-quasi-MMSE)decoder is equivalent to the pairwise-ZF(pairwise-MMSE)decoder, while the computational complexity is significantly reduced.

References:

[1] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction [J]. IEEE Trans Inform Theory, 1998, 44(2):744-765. DOI:10.1109/18.661517.
[2] Xu T Y, Xia X G. On space-time code design with a conditional PIC group decoding [J]. IEEE Trans Inform Theory, 2011, 57(6):3582-3593. DOI:10.1109/TIT.2011.2137250.
[3] Vehkalahti R, Hollanti C, Oggier F. Fast-decodable asymmetric space-time codes from division algebras [J]. IEEE Trans Inform Theory, 2012, 58(4):2362-2385.
[4] Markin N, Oggier F. Iterated space-time code constructions from cyclic algebras [J]. IEEE Trans Inform Theory, 2013, 59(9): 5966-5979.
[5] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs [J]. IEEE Trans Inform Theory, 1999, 45(5):1456-1467. DOI:10.1109/18.771146.
[6] Ayanoglu E, Larsson E G, Karipidis E. Computational complexity of decoding orthogonal space-time block codes [J]. IEEE Trans Commun, 2011, 59(4): 936-941.
[7] Zhang X, Xing J, Wang W B. Outage analysis of orthogonal space-time block code transmission in cognitive relay networks with multiple antennas [J]. IEEE Trans Veh Technol, 2013, 62(7): 3503-3508.
[8] Jafarkhani H. A quasi-orthogonal space-time block code [J]. IEEE Trans Commun, 2001, 49(1): 6842725-1-6842725-4. DOI:10.1109/26.898239.
[9] Liu L, Zhang H Z, Wang K Q, et al. Quasi-orthogonal space-time block codes for four antenna [C]//2009 International Conference on Networks Security, Wireless Communications and Trusted Computing. Wuhan, China, 2009: 451-454.
[10] Ham J, Kim K, Shin M, et al. Performance analysis of code selection algorithm based on quasi-orthogonal space-time block code [J]. IET Commun, 2010, 4(15): 1847-1854.
[11] Papadias C, Foschini G. Capacity-approaching space-time codes for system employing four transmitter antennas [J]. IEEE Trans Inform Theory, 2003, 49(3): 726-733.
[12] Jeong J S, Park S B, Jo C B, et al. Quasi-orthogonal space-time block codes based on single symbol decoding for four transmit antennas [C]//The 11th International Conference on Advance Communication Technology. Phoenix Park, Korea, 2009: 1742-1745.
[13] Alabed S J, Paredes J M, Gershman A B. A low complexity decoder for quasi-orthogonal space time block codes [J]. IEEE Trans Wireless Commun, 2011, 10(3): 988-994.
[14] Li Z Q, Qiu P P, Shen L F, et al. A new decoding algorithm of quasi-orthogonal space time block codes [C]//The 6th International Congress on Image and Signal Processing. Hangzhou, China, 2013:14116743-1-14116743-5.

Memo

Memo:
Biographies: Li Zhengquan(1976—), male, doctor, professor, lzq722@sina.com; Shen Lianfeng(corresponding author), male, professor, lfshen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61571108, 61201248), the Open Research Fund of National Mobile Communications Research Laboratory of China(No.2011D18), China Postdoctoral Science Foundation(No.2012M511175).
Citation: Li Zhengquan, Wu Ming, Shen Lianfeng, et al. Low complexity suboptimal decode algorithms for quasi-orthogonal space time block codes[J].Journal of Southeast University(English Edition), 2016, 32(1):1-5.DOI:10.3969/j.issn.1003-7985.2016.01.001.
Last Update: 2016-03-20