[1] Wang Z, Bovik A C. Modern image quality assessment [M]. San Rafael, CA, USA: Morgan & Claypool, 2006.
[2] Wang Z, Bovik A C, Lu L. Why is image quality assessment so difficult[C]//International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA, 2002: 3313-3316.
[3] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[4] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//37th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA, 2003: 1398-1402.
[5] Li C, Bovik A C. Three-component weighted structural similarity index[C]//SPIE. San Jose, CA, USA, 2009: 72420Q1-72420Q9.
[6] Wang Z, Li Q. Information content weighting for perceptual image quality assessment [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185-1198. DOI:10.1109/TIP.2010.2092435.
[7] Sheikh H R, Bovik A C. Image information and visual quality [J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
[8] Zhang L, Zhang D, Mou X Q, et al. FSIM: A feature similarity index for image quality assessment [J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. DOI:10.1109/TIP.2011.2109730.
[9] Zhang L, Shen Y, Li H Y. VSI: a visual saliency-induced index for perceptual image quality assessment [J]. IEEE Transactions on Image Processing, 2014, 23(10): 4270-4281. DOI:10.1109/TIP.2014.2346028.
[10] Xue W F, Zhang L, Mou X Q, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index [J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
[11] Zhang L, Zhang L, Mou X Q, et al. A comprehensive evaluation of full reference image quality assessment algorithms[C]//19th International Conference on Image Processing. Orlando, FL, USA, 2012: 1477-1480.
[12] Lin W S, Jay K C C. Perceptual visual quality metrics: A survey [J]. Journal of Visual Communication and Image Representation, 2011, 22(4): 297-312. DOI:10.1016/j.jvcir.2011.01.005.
[13] Wertheimer M. Laws of organization in perceptual forms(partial translation)[M]. Harcourt Brace Jovanovich, 1938: 71-88.
[14] Achanta R, Shaji A, Smith K, et al. Slicsuperpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI:10.1109/TPAMI.2012.120.
[15] Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation [J]. International Journal of Computer Vision, 2004, 59(2):167-181. DOI:10.1023/B:VISI.0000022288.19776.77.
[16] Shi J B, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[17] Moore A P, Prince S J, Warrell J, et al. Superpixel lattices[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA, 2008: 1-8.
[18] Levinshtein A, Stere A, Kutulakos K N, et al. Turbopixels: Fast superpixels using geometric flows [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. DOI:10.1109/TPAMI.2009.96.
[19] Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework[C]//European Conference on Computer Vision. Heraklion, Greece, 2010: 211-224.
[20] Kong Y Y, Deng Y, Dai Q H. Discriminative clustering and feature selection for brain MRI segmentation [J]. IEEE Signal Processing Letters, 2015, 22(5): 573-577.
[21] Sheikh H R, Wang Z, Cormack L, et al. LIVE image quality assessment database release 2 [EB/OL]. [2007-06-30]. http://live.ece.utexas.edu/.
[22] Horita Y, Shibata K, Kawayoke Y, et al. MICT image quality evaluation database [EB/OL].(2000)[2012-11-12]. http://mict.eng.u-toyama.ac.jp/mictdb.html.
[23] Ninassi A, Calet P L, Autrusseau F. Pseudo no reference image quality metric using perceptual data hiding[C]//SPIE Human Vision and Electronic Imaging. San Jose, CA, USA, 2006: 146-157.
[24] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms [J]. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451. DOI: 10.1109/TIP.2006.881959.
[25] Chen Y, Huang S Y, Pickwell-MacPherson E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy [J]. Optical Express, 2010, 18(2): 1177-1190. DOI:10.1364/OE.18.001177.
[26] Chen Y, Shi L Y, Feng Q J, et al. Artifact suppressed dictionary learning for low-dose CT image processing [J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271-2292. DOI:10.1109/TMI.2014.2336860.