|Table of Contents|

[1] Xie Chao, Lu Xiaobo, Zeng Weili, et al. Single frame super-resolution reconstructionbased on sparse representation [J]. Journal of Southeast University (English Edition), 2016, 32 (2): 177-182. [doi:10.3969/j.issn.1003-7985.2016.02.008]
Copy

Single frame super-resolution reconstructionbased on sparse representation()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 2
Page:
177-182
Research Field:
Computer Science and Engineering
Publishing date:
2016-06-20

Info

Title:
Single frame super-resolution reconstructionbased on sparse representation
Author(s):
Xie Chao1 2 Lu Xiaobo1 2 Zeng Weili3
1School of Automation, Southeast University, Nanjing 210096, China
2Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
3College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Keywords:
single frame super-resolution reconstruction sparse representation local orientation estimation principal component analysis(PCA) consistency of gradients
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2016.02.008
Abstract:
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of-the-art counterparts in terms of both numerical indicators and visual quality.

References:

[1] Zeng W L, Lu X B. A generalized DAMRF image modeling for superresolution of license plates[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 828-837. DOI:10.1109/tits.2011.2180714.
[2] Park S, Park M, Kang M. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. DOI:10.1109/msp.2003.1203207.
[3] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 9(6): 1153-1160. DOI:10.1109/TASSP.1981.1163711.
[4] Chan T F, Ng M K, Yau A C, et al. Super-resolution image reconstruction using fast inpainting algorithms[J]. Applied and Computational Harmonic Analysis, 2007, 23(1): 3-24. DOI:10.1016/j.acha.2006.09.005.
[5] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(/2/3/4): 259-268. DOI:10.1016/0167-2789(92)90242-f.
[6] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460-489. DOI:10.1137/040605412.
[7] Ren Z, He C, Zhang Q. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013, 93(9): 2408-2421. DOI:10.1016/j.sigpro.2013.02.015.
[8] Zeng W L, Lu X B, Fei S M. Image super-resolution employing a spatial adaptive prior model[J]. Neurocomputing, 2015, 162: 218-233. DOI:10.1016/j.neucom.2015.03.049.
[9] Candè E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI:10.1109/msp.2007.914731.
[10] Yang J, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage USA, 2008: 1-8.
[11] Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873 DOI:10.1109/TIP.2010.2050625.
[12] Wang J, Zhu S, Gong Y. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern Recognition Letters, 2010, 31(1): 1-10. DOI:10.1016/j.patrec.2009.09.004.
[13] Yang S, Liu Z, Wang M, et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction[J]. Neurocomputing, 2011, 74(17): 3193-3203. DOI:10.1016/j.neucom.2011.04.014.
[14] Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569-2582. DOI:10.1109/TIP.2014.2305844.
[15] Lu X, Yuan H, Yan P, et al. Geometry constrained sparse coding for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012:1648-1655.
[16] Yang S, Wang M, Chen Y, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4016-4028. DOI:10.1109/TIP.2012.2201491.
[17] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
[18] Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905. DOI:10.1007/s00041-008-9045-x.
[19] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. DOI:10.1002/cpa.20124.
[20] Donoho D L. For most large underdetermined systems of linear equations the minimal l1 norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. DOI:10.1002/cpa.20132.
[21] Feng X G, Milanfar P. Multiscale principal components analysis for image local orientation estimation[C]//Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2002, 1: 478-482.
[22] Li X, Hu Y, Gao X, et al. A multi-frame image super-resolution method[J]. Signal Processing, 2010, 90(2): 405-414. DOI:10.1016/j.sigpro.2009.05.028.
[23] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. DOI:10.1002/cpa.20042.
[24] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

Memo

Memo:
Biographies: Xie Chao(1987—), male, graduate; Lu Xiaobo(corresponding author), male, doctor, professor, xblu2013@126.com.
Foundation items: The National Natural Science Foundation of China(No.61374194, No.61403081), the National Key Science & Technology Pillar Program of China(No.2014BAG01B03), the Natural Science Foundation of Jiangsu Province(No.BK20140638), the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Citation: Xie Chao, Lu Xiaobo, Zeng Weili.Single frame super-resolution reconstruction based on sparse representation[J].Journal of Southeast University(English Edition), 2016, 32(2):177-182.doi:10.3969/j.issn.1003-7985.2016.02.008.
Last Update: 2016-06-20