|Table of Contents|

[1] Lu Daowei, Wang Shuanhong,. Equivalence of crossed product of linear categoriesand generalized Maschke theorem [J]. Journal of Southeast University (English Edition), 2016, 32 (2): 258-260. [doi:10.3969/j.issn.1003-7985.2016.02.020]
Copy

Equivalence of crossed product of linear categoriesand generalized Maschke theorem()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 2
Page:
258-260
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-06-20

Info

Title:
Equivalence of crossed product of linear categoriesand generalized Maschke theorem
Author(s):
Lu Daowei Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
linear category inner action crossed product generalized Maschke theorem
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2016.02.020
Abstract:
Some sufficient and necessary conditions are given for the equivalence between two crossed product actions of Hopf algebra H on the same linear category, and the Maschke theorem is generalized. Based on the result of the crossed product in the classic Hopf algebra theory, first, let A be a k-linear category and H be a Hopf algebra, and the two crossed products A#σHσH and A#′σH are isomorphic under some conditions. Then, let A#σHσH be a crossed product category for a finite dimensional and semisimple Hopf algebra H. If V is a left A#σHσH-module and WV is a submodule such that W has a complement as a left A-module, then W has a complement as a A#σHσH-module.

References:

[1] Cohen M, Montgomery S. Group-graded rings, smash products, and group actions[J]. Transactions of American Mathematical Society, 1987, 282(1): 237-258. DOI:10.2307/2000371.
[2] Marcelo M S A, Batista E. Enveloping actions for partial Hopf actions[J]. Communications in Algebra, 2010, 38(8): 2872-2902. DOI:10.1080/00927870903095582.
[3] Alvares E R, Alves M M S, Batista E. Partial Hopf module categories[J]. Journal of Pure and Applied Algebra, 2013, 217(8): 1517-1534. DOI:10.1016/j.jpaa.2012.11.008.
[4] Cibils C, Solotar A. Galois coverings, Morita equivalence and smash extensions of categories over a field[J]. Documenta Mathematica, 2006, 11: 143-159.
[5] St(~overa)nescu A, Stefan D. Cleft comodule category[J]. Communications in Algebra, 2013, 41(5): 1697-1726. DOI:10.1080/00927872.2011.649506.
[6] Montgomery S. Hopf algebras and their actions on rings[M]. Providence, RI, USA: American Mathematical Society, 1993:101-117.
[7] Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras[J]. Transactions of the American Mathematical Society, 1986, 298(2):671-711. DOI:10.2307/2000643.
[8] Stanescu A. On Hopf-Galois extensions of linear categories[J]. Analele Universitatii “Ovidius” Constanta-Seria Mathematica, 2012, 20(3): 111-130. DOI:10.2478/v10309-012-0059-7.

Memo

Memo:
Biographies: Lu Daowei(1987—), male, graduate; Wang Shuanhong(corresponding author), male, professor, shuanhwang2002@yahoo.com.
Foundation items: The National Natural Science Foundation of China(No.11371088), the Natural Science Foundation of Jiangsu Province(No.BK2012736), the Fundamental Research Funds for the Central Universities, the Research Innovation Program for College Graduates of Jiangsu Province(No.KYLX15_0109).
Citation: Lu Daowei, Wang Shuanhong. Equivalence of crossed product of linear categories and generalized Maschke theorem[J].Journal of Southeast University(English Edition), 2016, 32(2):258-260.doi:10.3969/j.issn.1003-7985.2016.02.020.
Last Update: 2016-06-20