[1] Al-Ghadhban S. Opportunistic round robin scheduling for V-BLAST systems over multiuser MIMO channels[J]. EURASIP Journal on Wireless Communications and Networking, 2014, 2014: 128. DOI:10.1186/1687-1499-2014-128.
[2] Fritzsche R, Rost P, Fettweis G. Robust rate adaptation and proportional fair scheduling with imperfect CSI [J]. IEEE Transactions on Wireless Communications, 2015, 14(8): 4417-4427. DOI:10.1109/twc.2015.2420564.
[3] Long H, Xiang W, Wang J, et al. Cooperative jamming and power allocation with untrusty two-way relay nodes[J]. IET Communications, 2014, 8(13): 2290-2297. DOI:10.1049/iet-com.2013.0580.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. DOI:10.1002/j.1538-7305.1975.tb02040.x.
[5] Li N, Tao X F, Xu J. Ergodic secrecy sum-rate for downlink multiuser MIMO systems with limited CSI feedback [J]. IEEE Communications Letters, 2014, 18(6): 969-972.
[6] Geraci G, Egan M, Yuan J H, et al. Secrecy sum-rates for multi-user MIMO regularized channel inversion precoding [J]. IEEE Transactions on Communications, 2012, 60(11): 3472-3482. DOI:10.1109/tcomm.2012.072612.110686.
[7] Zhao P, Zhang M, Yu H, et al. Robust beamforming design for sum secrecy rate optimization in MU-MISO networks [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(9): 1812-1823. DOI:10.1109/tifs.2015.2423263.
[8] Krikidis I, Ottersten B. Secrecy sum-rate for orthogonal random beamforming with opportunistic scheduling[J]. IEEE Signal Processing Letters, 2013, 20(2): 141-144. DOI:10.1109/lsp.2012.2234109.
[9] Zou Y L, Wang X B, Shen W M, et al. Security versus reliability analysis of opportunistic relaying [J]. IEEE Transactions on Vehicular Technology, 2014, 63(6): 2653-2661. DOI:10.1109/tvt.2013.2292903.
[10] Kundu C, Ghose S, Bose R. Secrecy outage of dual-hop regenerative multi-relay system with relay selection [J]. IEEE Transactions on Wireless Communications, 2015, 14(8): 4614-4625. DOI:10.1109/twc.2015.2423290.
[11] Chu Z, Cumanan K, Ding Z G, et al. Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer [J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1833-1847.
[12] Lee J, Choi W. Multiuser diversity for secrecy communications using opportunistic jammer selection: Secure DOF and JOF scaling law [J]. IEEE Transactions on Signal Processing, 2014, 62(4): 828-851. DOI:10.1109/tsp.2013.2293979.
[13] Tang X J, Liu R H, Spasojevic P, et al. Interference assisted secret communication [J]. IEEE Transactions on Information Theory, 2011, 57(5): 3153-3167. DOI:10.1109/tit.2011.2121450.
[14] Garnaev A, Baykal-Gursoy M, Poor H V. A game theoretic analysis of secret and reliable communication with active and passive adversarial modes [J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2155-2163. DOI:10.1109/twc.2015.2498934.
[15] Zou Y L, Li X L, Liang Y C. Secrecy outage and diversity analysis of cognitive radio systems[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(11): 2222-2236. DOI:10.1109/jsac.2014.141121.
[16] Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x.
[17] Zou Y, Zhu J, Zheng B, et al. An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5438-5445. DOI:10.1109/tsp.2010.2053708.