|Table of Contents|

[1] Bui Thi Oanh, Xu Pingping, Zhu Wenxiang, Wu Guilu, et al. NBP-based localization algorithmfor wireless sensor networks in NLOS environments [J]. Journal of Southeast University (English Edition), 2016, 32 (4): 395-401. [doi:10.3969/j.issn.1003-7985.2016.04.001]
Copy

NBP-based localization algorithmfor wireless sensor networks in NLOS environments()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 4
Page:
395-401
Research Field:
Information and Communication Engineering
Publishing date:
2016-12-20

Info

Title:
NBP-based localization algorithmfor wireless sensor networks in NLOS environments
Author(s):
Bui Thi Oanh Xu Pingping Zhu Wenxiang Wu Guilu
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
Keywords:
non-line-of-sight(NLOS) localization accuracy wireless sensor networks
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2016.04.001
Abstract:
To mitigate the impacts of non-line-of-sight(NLOS)errors on location accuracy, a non-parametric belief propagation(NBP)-based localization algorithm in the NLOS environment for wireless sensor networks is proposed. According to the amount of prior information known about the probabilities and distribution parameters of the NLOS error distribution, three different cases of the maximum a posterior(MAP)localization problems are introduced. The first case is the idealized case, i.e., the range measurements in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known. The probability of a communication of a pair of nodes in the NLOS conditions and the corresponding distribution parameters of the NLOS errors are known in the second case. The third case is the worst case, in which only knowledge about noise measurement power is obtained. The proposed algorithm is compared with the maximum likelihood-simulated annealing(ML-SA)-based localization algorithm. Simulation results demonstrate that the proposed algorithm provides good location accuracy and considerably outperforms the ML-SA-based localization algorithm for every case. The root mean square error(RMSE)of the location estimate of the NBP-based localization algorithm is reduced by about 1.6 m in Case 1, 1.8 m in Case 2 and 2.3 m in Case 3 compared with the ML-SA-based localization algorithm. Therefore, in the NLOS environments, the localization algorithms can obtain the location estimates with high accuracy by using the NBP method.

References:

[1] Silventoinen M, Rantalainen T. Mobile station locating in GSM [C]//IEEE Wireless Communication System Symposium. New York, USA, 1996: 53-59. DOI: 10.1109/WCSS.1995.588481.
[2] Woo S-S, You H-R, Koh J-S. The NLOS mitigation technique for position location using IS-95 CDMA networks [C]//The 52nd Vehicular Technology Conference. Boston, USA, 2000: 2556-2560. DOI: 10.1109/VETECF.2000.886790.
[3] Xiao Z L, Wen H K, Markham A. Non-line-of-sight identification and mitigation using received signal strength [J]. IEEE Transactions on Wireless Communication, 2015, 14(3): 1689-1702. DOI: 10.1109/TWC.2014.2372341.
[4] Almazrouei E, Al Sindi N, Al-Araji S R, et al. Measurement and analysis of NLOS identification metrics for WLAN systems [C]//IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication(PIMRC). Washington DC, USA, 2014: 280-284. DOI: 10.1109/PIMRC.2014.7136175.
[5] Nguyen T V, Jeong Y M, Shin H D, et al. Machine learning for wideband localization [J]. IEEE Journal on Selected Area in Communications, 2015, 33(7): 1357-1380. DOI:10.1109/JSAC.2015.2430191.
[6] Liu D W, Lee M-C, Pun C-M, et al. Analysis of wireless localization in nonline-of-sight conditions [J]. IEEE Transactions on Vehicular Technology, 2013, 62(4): 1484-1492. DOI:10.1109/tvt.2013.2244928.
[7] Mazuelas S, Lago F A, Blas J, et al. Prior NLOS measurement correction for positioning in cellular wireless networks [J]. IEEE Transactions on Vehicular Technology, 2009, 58(5): 2585-2591. DOI:10.1109/tvt.2008.2009305.
[8] Zhao Y B, Yang Y, Kyas M. Adaptive range-based nonlinear filters for wireless indoor positioning system using dynamic Gaussian model [J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4282-4291. DOI:10.1109/TVT.2014.2364045.
[9] Li S, Hedley M, Collings I B, et al. TDOA-based localization for seme-static targets in NLOS environments [J]. IEEE Wireless Communication Letters, 2015, 4(5): 513-516. DOI:10.1109/lwc.2015.2449306.
[10] Sudderth E B, Ihler A T, Isard M, et al. Nonparametric belief propagation [J]. Communications of the ACM, 2010, 53(10): 95-103. DOI:10.1145/1831407.1831431.
[11] Pearl J. Probabilistic reasoning in intelligent systems [M]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.
[12] Ihler A T, Fisher J W, Moses R L, et al. Nonparametric belief propagation for self-localization of sensor networks [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(4): 809-819. DOI:10.1109/jsac.2005.843548.
[13] Chen H Y, Wang G, Wang Z Z, et al. Non-line-of-sight node localization based on seme-definite programming in wireless sensor networks [J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 108-116. DOI:10.1109/twc.2011.110811.101739.

Memo

Memo:
Biographies: Bui Thi Oanh(1984—), female, graduate; Xu Pingping(corresponding author), female, doctor, professor, xpp@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 61271207, 61372104).
Citation: Bui Thi Oanh, Xu Pingping, Zhu Wenxiang, et al. NBP-based localization algorithm for wireless sensor networks in NLOS environments[J].Journal of Southeast University(English Edition), 2016, 32(4):395-401.DOI:10.3969/j.issn.1003-7985.2016.04.001.
Last Update: 2016-12-20