|Table of Contents|

[1] Liu Chao, Zhang Chunwei, Liu Siyang, Sun Weifeng, et al. SPICE model of trench-gate MOSFET device [J]. Journal of Southeast University (English Edition), 2016, 32 (4): 408-414. [doi:10.3969/j.issn.1003-7985.2016.04.003]
Copy

SPICE model of trench-gate MOSFET device()
沟槽栅MOSFET器件SPICE模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 4
Page:
408-414
Research Field:
Electronic Science and Engineering
Publishing date:
2016-12-20

Info

Title:
SPICE model of trench-gate MOSFET device
沟槽栅MOSFET器件SPICE模型
Author(s):
Liu Chao, Zhang Chunwei, Liu Siyang, Sun Weifeng
National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China
刘超, 张春伟, 刘斯扬, 孙伟锋
东南大学国家专用集成电路系统工程技术研究中心, 南京 210096
Keywords:
trench-gate metal-oxide-semiconductor field-effect transistor(MOSFET) simulation program with integrated circuit emphasis(SPICE)model drift region resistance model dynamic model
沟槽栅MOSFET SPICE模型 漂移区电阻模型 动态模型
PACS:
TN386
DOI:
10.3969/j.issn.1003-7985.2016.04.003
Abstract:
A novel simulation program with an integrated circuit emphasis(SPICE)model developed for trench-gate metal-oxide-semiconductor field-effect transistor(MOSFET)devices is proposed. The drift region resistance was modeled according to the physical characteristics and the specific structure of the trench-gate MOSFET device. For the accurate simulation of dynamic characteristics, three important capacitances, gate-to-drain capacitance Cgd, gate-to-source capacitance Cgs and drain-to-source capacitance Cds, were modeled, respectively, in the proposed model. Furthermore, the self-heating effect, temperature effect and breakdown characteristic were taken into account; the self-heating model and breakdown model were built in the proposed model; and the temperature parameters of the model were revised. The proposed model is verified by experimental results, and the errors between measured data and simulation results of the novel model are less than 5%. Therefore, the model can give an accurate description for both the static and dynamic characteristics of the trench-gate MOSFET device.
针对沟槽栅纵向双扩散场效应晶体管(trench-gate MOSFET), 提出了一种新型的SPICE模型.通过对沟槽栅MOSFET器件的物理特性及其内在结构分析, 建立了漂移区电阻模型.为了准确模拟器件的动态特性, 对栅源电容、栅漏电容及源漏电容分别建立了模型.考虑了器件的自热效应、温度效应及击穿特性, 建立了自热模型和击穿电压模型, 并对模型温度参数进行了修正.通过器件测试结果验证, 各参数测试结果和对应模型的仿真结果误差均小于5%.因此, 该模型能准确地反映器件的静态和动态特性.

References:

[1] Ueda D, Takagi H, Kano G. A new vertical power MOSFET structure with extremely reduced on-resistance [J]. IEEE Transactions on Electron Devices, 1985, 32(1): 2-6. DOI:10.1109/t-ed.1985.21900.
[2] Shenai K. Optimized trench MOSFET technologies for power devices [J]. IEEE Transactions on Electron Devices, 1992, 39(6): 1435-1443. DOI:10.1109/16.137324.
[3] Bulucea C, Rossen R. Trench DMOS transistor technology for high current(100 A range)switching [J]. Solid-State Electronics, 1991, 34(5): 493-507. DOI:10.1016/0038-1101(91)90153-p.
[4] Wang Y, Liu Y J, Yu C H, et al. A novel trench-gated power MOSFET with reduced gate charge [J]. IEEE Electron Device Letters, 2015, 36(2): 165-167. DOI:10.1109/led.2014.2382112.
[5] Won J, Koo J, Cho D, et al. Power trench gate MOSFET with an integrated 6-pack configuration for a 3-phase inverter [J]. Journal of the Korean Physical Society, 2015, 67(7): 1214-1221. DOI:10.3938/jkps.67.1214.
[6] Kim Y, Fossum J. Physical DMOST modeling for high voltage IC CAD [J]. IEEE Transactions Electron Devices, 1990, 37(3): 797-803. DOI:10.1109/16.47788.
[7] Kim Y, Fossum J, Williams R, et al. New physical insights and models for high voltage LDMOS IC CAD [J]. IEEE Transactions on Electron Devices, 1991, 38(7): 1641-1649. DOI:10.1109/16.85161.
[8] Iizuka T, Fukushima K, Tanaka A, et al. Modeling of trench-gate type HV-MOSFETs for circuit simulation [J]. IEICE Transactions on Electronics, 2013, 96(5): 744-751. DOI:10.1587/transele.e96.c.744.
[9] Dharmawardana K G P, Amaratunga G A J. Modeling of high current density trench gate MOSFET [J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2420-2428.
[10] Wang J, Zhao T F, Li J, et al. Characterization, modeling, and application of 10-kV SiC MOSFET [J]. IEEE Transactions on Electron Devices, 2008, 55(8): 1798-1806. DOI:10.1109/ted.2008.926650.
[11] Ho C S, Liou J J, Chen F, et al. An analytical MOSFET breakdown model including self-heating effect [J]. Solid-State Electronics, 2000, 44(1): 125-131. DOI:10.1016/s0038-1101(99)00198-7.
[12] Liu S Y, Zhu R X, Jia K, et al. A novel model of the high-voltage VDMOS for the circuit simulation [J]. Solid-State Electronics, 2014, 93: 21-26. DOI:10.1016/j.sse.2013.12.006.
[13] Alatise O, Parker-Allotey N A, Jennings M, et al. Modeling the impact of the trench depth on the gate-drain capacitance in power MOSFETs [J]. IEEE Electron Device Letters, 2011, 32(9): 1269-1271. DOI:10.1109/led.2011.2159476.
[14] Hueting R J E, Hijzen E A, Heringa A, et al. Gate-drain charge analysis for switching in power trench MOSFETS [J]. IEEE Transactions on Electron Devices, 2004, 51(8): 1323-1330. DOI:10.1109/ted.2004.832096.
[15] Chauhan Y S, Anghel C, Krummenacher F, et al. Scalable general high voltage MOSFET model including quasi-saturation and self-heating effects [J]. Solid-State Electronics, 2006, 50(11/12): 1801-1813. DOI:10.1016/j.sse.2006.09.002.

Memo

Memo:
Biographies: Liu Chao(1993—), male, graduate; Sun Weifeng(corresponding author), male, doctor, professor, swffrog@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61604038), China Postdoctoral Science Foundation(No.2015M580376), the Natural Science Foundation of Jiangsu Province(No.BK20160691), Jiangsu Postdoctoral Science Foundation(No.1501010A).
Citation: Liu Chao, Zhang Chunwei, Liu Siyang, et al. SPICE model of trench-gate MOSFET device[J].Journal of Southeast University(English Edition), 2016, 32(4):408-414.DOI:10.3969/j.issn.1003-7985.2016.04.003.
Last Update: 2016-12-20