|Table of Contents|

[1] Chen Wenwu, Dai Pengfei, Zhang Jingke, et al. Stability monitoring and evaluation of the modeled test squarefor prehistoric earthen sites during excavation period [J]. Journal of Southeast University (English Edition), 2016, 32 (4): 464-471. [doi:10.3969/j.issn.1003-7985.2016.04.012]
Copy

Stability monitoring and evaluation of the modeled test squarefor prehistoric earthen sites during excavation period()
史前土遗址模拟考古探方发掘期间的稳定性监测和评价
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 4
Page:
464-471
Research Field:
Publishing date:
2016-12-20

Info

Title:
Stability monitoring and evaluation of the modeled test squarefor prehistoric earthen sites during excavation period
史前土遗址模拟考古探方发掘期间的稳定性监测和评价
Author(s):
Chen Wenwu1 2 Dai Pengfei1 2 Zhang Jingke1 2 Chen Pengfei1 2 Guo Qinglin3 Sun Manli4
1School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730030, China
2Key Laboratory of Mechanics on Disaster and Environment in Western China of Ministry of Education, Lanzhou University, Lanzhou 730030, China
3National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang 736200, China
4School of Cultural Heritage, Northwest University, Xi’an 710069, China
谌文武1 2 戴鹏飞1 2 张景科1 2 陈鹏飞1 2 郭青林3 孙满利4
1兰州大学土木工程与力学学院, 兰州730030; 2兰州大学西部灾害与环境力学教育部重点实验室, 兰州730030; 3敦煌研究院国家古代壁画与土遗址保护工程技术研究中心, 敦煌736200; 4西北大学文化遗产学院, 西安710069
Keywords:
prehistoric earthen sites archaeological excavation test square stability monitoring
史前土遗址 考古发掘 模拟探方 稳定性监测
PACS:
K854.1
DOI:
10.3969/j.issn.1003-7985.2016.04.012
Abstract:
In order to explore the stability of test square during archaeological excavation for prehistoric earthen sites in Hangzhou, a modeled test square with 2.3 m in depth, in-plane dimensions of 5 m in width by 5 m in length, and an archaeological column in the middle was excavated by means of a top-down excavation technique. To investigate the stability performance of the modeled test square and the associated effect on the adjacent area, a real-time comprehensive instrumentation program was conducted during the excavation. Field observations included ground settlements, lateral displacement, pore pressure and underground water level. Monitoring data indicates that the ground settlement induced by dewatering and unloading action basically decreases with the increase of the distance away from the pit edge, and the lateral displacements at four sides show a nonlinear variation along the depth. The maximum value is far below the acceptable value regulated by the related standard, which validates the stability of the modeled test square during excavation. Variations of pore pressure and water level suggest that long-term stability should be paid more attention due to the slow consolidation of soft soil. Meanwhile, it is proved that the step shape of the wall can resist lateral displacement more effectively than the vertical shape of wall. This case study provides insights into the real archaeological excavation in Hangzhou, in particular Liangzhu prehistoric earthen sites.
为了研究考古开挖过程中的探方稳定性, 以杭州地区良渚遗址为例, 开挖了长、宽为5 m, 深度为2.3 m, 中间附带考古柱的模拟考古探方.在开挖过程中实时监测探方和邻近区域的稳定性参数, 包括地面沉降、侧向位移、孔隙水压力和地下水位监测.监测数据表明, 由于降水和探方侧边卸荷引起的地面沉降基本上随着离探方边缘距离的增大而减小, 探方四边的侧向位移显示也沿深度方向的非线性变化且最大侧向位移值满足稳定性要求.孔隙压力和水位数据的变化表明, 软土地区土体固结速率较慢, 探方开挖之后的长期稳定性监测显得十分重要.同时, 模拟探访发掘证明了台阶状开挖可以比垂直开挖更有效地减少侧向位移.模拟试验对于杭州良渚遗址的正式考古发掘提供了参考价值.

References:

[1] Rotroff S I. Archaeologists on conservation: How codes of archaeological ethics and professional standards treat conservation [J]. Journal of the American Institute for Conservation, 2001, 40(2): 137-146. DOI:10.1179/019713601806113085.
[2] Arvanitakis M, Mira P, Kotsopoulou E, et al. Stabilisation and protection of the sides of the trenches and pits of the Vergina Royal Tombs, Greece [C]//International Symposium Organized by the Greek National Group of IAEG. Athens, Greek, 1988: 249-252.
[3] Ehrenhard J E. Stabilization and restoration at Russell Cave [J]. Cultural Resources Management, 1994, 17(1): 28-30.
[4] Charnov A A. 100 years of site maintenance and repair: conservation of earthen archaeological sites in the American southwest [J]. Journal of Architectural Conservation, 2014, 17(2): 59-75. DOI:10.1080/13556207.2011.10785089.
[5] Corfield M. Archaeological sites: Conservation and management [J]. Journal of the Institute of Conservation, 2014, 37(2): 197-207. DOI:10.1080/19455224.2014.960693.
[6] Finno R J, Atmatzidis D K, Perkins S B. Observed performance of a deep excavation in clay [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1990, 27(2): A114. DOI:10.1016/0148-9062(90)95270-b.
[7] Lee F H, Yong K Y, Quan K C N, et al. Effect of corners in strutted excavations: Field monitoring and case histories [J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998, 124(4): 339-349.
[8] Hashash Y M A, Marulanda C, Ghaboussi J, et al. Novel Approach to integration of numerical modeling and field observations for deep excavations [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(8): 1019-1031. DOI:10.1061/(asce)1090-0241(2006)132:8(1019).
[9] Kung G T, Juang C H, Hsiao E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(6): 731-747. DOI:10.1061/(asce)1090-0241(2007)133:6(731).
[10] Seo M W, Olson S M, Yang K S, et al. Sequential analysis of ground movements at three deep excavation sites with mixed ground profiles [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(5): 656-668. DOI:10.1061/(asce)gt.1943-5606.0000257.
[11] Hashash Y M A, Whittle A J. Ground movement prediction for deep excavations in soft clay[J]. Journal of Geotechnical Engineering, 1996, 122(6): 474-486. DOI:10.1061/(asce)0733-9410(1996)122:6(474).
[12] Jen L C. The design and performance of deep excavations in clay [D]. Massachusetts: Massachusetts Institute of Technology, 2005.
[13] Moormann C. Analysis of wall and ground movements due to deep excavation in soft soils based on a new worldwide database [J]. Soils and Foundation, 2004, 44(1): 87-98. DOI:10.3208/sandf.44.87.
[14] Hashash Y M A, Osouli A, Marulanda C. Central artery/tunnel project excavation induced ground deformations [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2008, 134(9): 1399-1406. DOI:10.1061/(asce)1090-0241(2008)134:9(1399).
[15] Salgado R. The engineering of foundations[M]. New York: McGraw-Hill, 2008.
[16] Ou C Y, Hsieh P G, Chiou D C. Characteristics of ground surface settlement during excavation [J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. DOI:10.1139/t93-068.
[17] Hsieh P G, Ou C Y. Shape of ground surface settlement profiles caused by excavation [J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. DOI:10.1139/t98-056.
[18] Zhong W W, Ng C W, Guo B L. Characteristics of wall deflections and ground surface settlements in Shanghai [J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-1254. DOI:10.1139/t05-056.
[19] Wang J H, Xu Z H, Wang W D. Wall and ground movements due to deep excavations in Shanghai soft soils [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(7): 985-994. DOI:10.1061/(asce)gt.1943-5606.0000299.
[20] Tan Y, Wei B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(1): 69-88. DOI:10.1061/(asce)gt.1943-5606.0000553.
[21] Tan Y, Wang D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: Bottom-up construction of the central cylindrical shaft [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(11): 1875-1893. DOI:10.1061/(asce)gt.1943-5606.0000928.
[22] Zhou Z, Wang H G, Fu H L, et al. Influences of rainfall infiltration on stability of accumulation slope by in-situ monitoring test [J]. Journal of Central South University of Technology(English Edition), 2009, 16(2): 297-302. DOI:10.1007/s11771-009-0051-1.
[23] Xu C J, Cheng S Z, Cai Y Q, et al. Deformation characteristic analysis of foundation pit under asymmetric excavation condition [J]. Rock & Soil Mechanics, 2014, 35(7):1929-1934.(in Chinese)

Memo

Memo:
Biography: Chen Wenwu(1966—), male, professor, sungp@lzu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51578272), the National Key Technology R& D Program of China during the Twelfth Five-Year Plan Period(No.2013BAK08B11).
Citation: Chen Wenwu, Dai Pengfei, Zhang Jingke, et al.Stability monitoring and evaluation of the modeled test square for prehistoric earthen sites during excavation period[J].Journal of Southeast University(English Edition), 2016, 32(4):464-471.DOI:10.3969/j.issn.1003-7985.2016.04.012.
Last Update: 2016-12-20