|Table of Contents|

[1] Si WeiYang HaojieJi AnpingLi Kun, Sha JingjieLiu Lei, Chen Yunfei,. Electrophoresis of poly(dT)20 through α-hemolysin nanoporein high concentration potassium chloride solution [J]. Journal of Southeast University (English Edition), 2016, 32 (4): 496-501. [doi:10.3969/j.issn.1003-7985.2016.04.017]
Copy

Electrophoresis of poly(dT)20 through α-hemolysin nanoporein high concentration potassium chloride solution()
高浓度氯化钾盐溶液中poly(dT)20α溶血素纳米孔内的电泳动力学
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 4
Page:
496-501
Research Field:
Mechanical Engineering
Publishing date:
2016-12-20

Info

Title:
Electrophoresis of poly(dT)20 through α-hemolysin nanoporein high concentration potassium chloride solution
高浓度氯化钾盐溶液中poly(dT)20α溶血素纳米孔内的电泳动力学
Author(s):
Si WeiYang HaojieJi AnpingLi Kun, Sha JingjieLiu Lei, Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Nanjing 211189, China
司伟, 杨浩杰, 纪安平, 李堃, 沙菁刘磊陈云飞
东南大学机械工程学院, 南京 211189; 江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Keywords:
nanopore transport speed ionic current electrophoresis
纳米孔 过孔速度 离子电流 电泳
PACS:
TH789;Q786
DOI:
10.3969/j.issn.1003-7985.2016.04.017
Abstract:
Experiments of poly(dT)20 electrophoresis through α-hemolysin nanopores were performed to unveil the electrophoretic transport mechanism of DNA through nanopores in high concentration potassium chloride solution. It is found that there are two obvious current blockades induced by poly(dT)20 translocation and collision events. Both blockade currents increase linearly with the applied bias voltage. However, the normalized blockade currents are almost kept the same although variable bias voltages are applied. The collision time of poly(dT)20 in the luminal site of the pore remains constant for different voltages. The translocation speed of poly(dT)20 through the nanopore decreases with the increase of bias voltage. It is because as the potential increases, the drag force on the homopolymer helps it to crumple into a cluster much easier due to the poor stacking of thymine residues compared with homopolymers consisting of other nucleotides. Molecular dynamics simulations further confirm the experimental results. Increasing the applied bias voltage can slow down the translocation velocity of the flexible poly(dT)20, which favors increasing the precision of single molecule detection by using nanopores.
为了揭示高浓度盐溶液中DNA穿过纳米孔时的动力学行为, 实验研究了poly(dT)20电泳穿过α溶血素纳米孔的输运机理.实验结果表明, 阻塞电流主要由DNA的过孔事件和碰撞事件引起.2种事件引发的阻塞电流都随着外加电势的增加而线性增加.尽管外加电势存在差异, 归一化之后的阻塞电流幅值却都保持不变.此外, poly(dT)20的碰撞事件持续时间并不受电压影响, 而过孔时间却随着外加电势的增加而相应延长.这是由于胸腺嘧啶的堆叠效应较差, 相比较其他碱基而言, 在强电场力作用下, poly(dT)20更容易发生蜷曲, 导致过孔阻力增加.分子动力学模拟也进一步对实验结果进行了验证.研究结果表明, 增加跨膜电势差有助于降低柔性poly(dT)20的过孔速度, 从而提高单分子的检测精度.

References:

[1] Haque F, Li J H, Wu H C, et al. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA[J]. Nano Today, 2013, 8(1): 56-74.
[2] Cracknell J A, Japrung D, Bayley H. Translocating kilobase RNA through the staphylococcal α-hemolysinnanopore[J]. Nano Letters, 2013, 13(6): 2500-2505. DOI:10.1021/nl400560r.
[3] Manrao E A, Derrington I M, Pavlenok M, et al. Nucleotide discrimination with DNA immobilized in the Mspa nanopore[J]. PLoS One, 2011, 6(10): e25723. DOI:10.1371/journal.pone.0025723.
[4] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[5] Akeson M, Branton D, Kasianowicz J J, et al. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules[J]. Biophysical Journal, 1999, 77(6): 3227-3233. DOI:10.1016/S0006-3495(99)77153-5.
[6] Meller A, Nivon L, Brandin E, et al. Rapid nanopore discrimination between single polynucleotide molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 1079-1084. DOI:10.1073/pnas.97.3.1079.
[7] Khulbe P K, Mansuripur M, Gruener R. DNA translocation through α-hemolysin nanopores with potential application to macromolecular data storage[J]. Journal of Applied Physics, 2005, 97(10): 104317. DOI:10.1063/1.1905791.
[8] Henrickson S E, Misakian M, Robertson B, et al. Driven DNA transport into an asymmetric nanometer-scale pore[J]. Physical Review Letters, 2000, 85(14): 3057-3060. DOI:10.1103/PhysRevLett.85.3057.
[9] Wang H Y, Li Y, Qin L X, et al. Single-molecule DNA detection using a novel sp1 protein nanopore[J].Chemical Communications, 2013, 49(17): 1741-1743. DOI:10.1039/c3cc38939a.
[10] Si W, Sha J J, Liu L, et al. Detecting DNA using a single graphene pore by molecular dynamics simulations[J]. Key Engineering Materials, 2012, 503:423-426. DOI:10.4028/www.scientific.net/kem.503.423.
[11] Si W, Sha J, Liu L, et al. Effect of nanopore size on poly(dT)30 translocation through silicon nitridemembrane[J]. Science China Technological Sciences, 2013, 56(10): 2398-2402. DOI:10.1007/s11431-013-5330-2.
[12] Meller A, Branton D. Single molecule measurements of DNA transport through a nanopore[J]. Electrophoresis, 2002, 23(16): 2583-2591.
[13] Gopfrich K, Kulkarni C V, Pambos O J, et al. Lipid nanobilayers to host biological nanopores for DNA translocations[J]. Langmuir, 2013, 29(1): 355-364.. DOI:10.1021/la3041506.
[14] Meller A, Nivon L, Branton D. Voltage-driven DNA translocations through a nanopore[J]. Physical Review Letters, 2001, 86(15): 3435-3438. DOI:10.1103/PhysRevLett.86.3435.
[15] Hess B, Kutzner C, van der Spoel D, et al. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. DOI:10.1021/ct700301q.
[16] van der Spoel D, Lindahl E, Hess B, et al. Gromacs: Fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. DOI:10.1002/jcc.20291.
[17] Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society, 1996, 118(9): 2309. DOI:10.1021/ja955032e.
[18] Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N)method for Ewald sums in large systems[J].The Journal of Chemical Physics, 1993, 98(12): 10089-10092. DOI:10.1063/1.464397.

Memo

Memo:
Biographies: Si Wei(1989—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51435003, 51375092), Research Program of Chongqing Municipal Education Commission(No.KJ1401030), the Research & Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0100), the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1540).
Citation: Si Wei, Yang Haojie, Ji Anping, et al.Electrophoresis of poly(dT)20 through α-hemolysin nanopore in high concentration potassium chloride solution[J].Journal of Southeast University(English Edition), 2016, 32(4):496-501.DOI:10.3969/j.issn.1003-7985.2016.04.017.
Last Update: 2016-12-20