[1] Shorter P J, Langley R S. Vibro-acoustic analysis of complex systems [J]. Journal of Sound and Vibration, 2005, 288(3): 669-699. DOI:10.1016/j.jsv.2005.07.010.
[2] Roibás E, Chimeno M, López-Díez J, et al. A mode count procedure for mid-frequency analysis of complex vibro-acoustic systems [J]. Aerospace Science and Technology, 2013, 29(1): 165-174. DOI:10.1016/j.ast.2013.02.005.
[3] Heckl M. Structure-borne-sound[C]//Noise Generation and Control in Mechanical Engineering. Vienna: Springer, 1982: 209-287.DOI:10.1007/978-3-7091-2894-7_3.
[4] Petyt M. Introduction to finite element vibration analysis[M]. Cambridge: Cambridge University Press, 2010.
[5] Woodhouse J. An introduction to statistical energy analysis of structural vibration[J]. Applied Acoustics, 1981, 14(6): 455-469. DOI:10.1016/0003-682x(81)90004-9.
[6] Lyon R H. Theory and application of statistical energy analysis[M]. Elsevier, 2014.
[7] Fahy F J. Statistical energy analysis: A critical overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1994, 346(1681): 431-447. DOI:10.1098/rsta.1994.0027.
[8] Burroughs C B, Fischer R W, Kern F R. An introduction to statistical energy analysis[J]. The Journal of the Acoustical Society of America, 1997, 101(4): 1779-1789. DOI:10.1121/1.418074.
[9] Babuška I, Ihlenburg F, Paik E T, et al. A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 128(3): 325-359. DOI:10.1016/0045-7825(95)00890-x.
[10] Strouboulis T, Copps K, Babuska I. The generalized finite element method: An example of its implementation and illustration of its performance [J]. International Journal for Numerical Methods in Engineering, 2000, 47(8): 1401-1417. DOI:10.1002/(sici)1097-0207(20000320)47:8<1401::aid-nme835>3.0.co;2-8.
[11] Franca L P, Farhat C, Macedo A P, et al. Residual-free bubbles for the Helmholtz equation[J]. International Journal for Numerical Methods in Engineering, 1997, 40(21): 4003-4009. DOI:10.1002/(sici)1097-0207(19971115)40:21<4003::aid-nme199>3.0.co;2-z.
[12] Soize C. Reduced models in the medium-frequency range for general external structural-acoustic systems [J]. The Journal of the Acoustical Society of America, 1998, 103(6): 3393-3406. DOI:10.1121/1.423052.
[13] Melenk J M, Babuška I. The partition of unity finite element method: Basic theory and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289-314. DOI:10.1016/s0045-7825(96)01087-0.
[14] Langley R S. A wave intensity technique for the analysis of high frequency vibrations [J]. Journal of Sound and Vbration, 1992, 159(3): 483-502. DOI:10.1016/0022-460x(92)90754-l.
[15] Mace B R. Statistical energy analysis: Coupling loss factors, indirect coupling and system modes [J]. Journal of Sound and Vibration, 2005, 279(1): 141-170. DOI:10.1016/j.jsv.2003.10.040.
[16] Shorter P J, Langley R S. On the reciprocity relationship between direct field radiation and diffuse reverberant loading [J]. The Journal of the Acoustical Society of America, 2005, 117(1): 85-95. DOI:10.1121/1.1810271.