|Table of Contents|

[1] Xu Qimin, Li Xu, Li Bin, Song Xianghui, et al. An interacting multiple model-based two-stage Kalman filterfor vehicle positioning [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 177-181. [doi:10.3969/j.issn.1003-7985.2017.02.009]
Copy

An interacting multiple model-based two-stage Kalman filterfor vehicle positioning()
一种用于车辆定位的交互式多模型两级卡尔曼滤波
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
177-181
Research Field:
Traffic and Transportation Engineering
Publishing date:
2017-06-30

Info

Title:
An interacting multiple model-based two-stage Kalman filterfor vehicle positioning
一种用于车辆定位的交互式多模型两级卡尔曼滤波
Author(s):
Xu Qimin1 Li Xu1 Li Bin2 Song Xianghui2
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of Technology on Intelligent Transportation Systems, Research Institute of Highway of Ministry of Transport, Beijing 100088, China
徐启敏1 李旭1 李斌2 宋向辉2
1东南大学仪器科学与工程学院, 南京210096; 2交通运输部公路科学研究院智能交通技术交通行业重点实验室, 北京100088
Keywords:
interacting multiple model(IMM) two-stage filter uncertain noise vehicle positioning
交互式多模型 两级滤波 不确定噪声 车辆定位
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2017.02.009
Abstract:
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS)inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF)is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMM-TSKF is 25% lower than that of the general TSKF.
为了解决一般状态增强型卡尔曼滤波和两级卡尔曼滤波在微机械惯性传感器不确定噪声的影响下难以获得良好定位性能的问题, 提出一种新型的基于交互式多模型的两级卡尔曼滤波方法来适应微机械惯性传感器的不确定噪声.根据不同的噪声特性, 建立3个偏差滤波器来覆盖大范围的噪声水平.交互式多模型算法根据3个偏差滤波器可以准确估计出惯性传感器的偏差值, 并用来修正无偏差滤波器.因此, 应用所提出的滤波方法后, 车辆定位系统在不确定噪声的影响下也能获得较好的性能.实验结果显示所提出的交互式多模型两级卡尔曼滤波的平均定位误差比一般两级卡尔曼滤波方法低25%.

References:

[1] Kim K H, Lee J G, Park C G. Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1):125-137.DOI:10.1109/TAES.2009.4805268.
[2] Feng B, Fu M, Ma H, et al. Kalman filter with recursive covariance estimation—sequentially estimating process noise covariance [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6253-6263. DOI:10.1109/tie.2014.2301756.
[3] Ye J, Zhang Z, Shen A, et al. Kalman filter based grid impedance estimating for harmonic order scheduling method of active power filter with output LCL filter [C]//International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Anacapri, Italy, 2016: 359-364.
[4] Lee J Y, Kim H S, Choi K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1): 63-75. DOI:10.1007/s10291-015-0446-4.
[5] Wang Y N, Deng X, Zhao W. Fuzzy Kalman filter based on weighted matrix and its application in integrated navigation [J]. Journal of Chinese Inertial Technology, 2008, 16(3): 334-338.(in Chinese)
[6] Jo K, Chu K, Sunwoo M. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning [J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1):329-343. DOI:10.1109/tits.2011.2171033.
[7] Kong J, Zhai X. Application of IMM-Kalman filter algorithm in vehicle navigation system [J]. Computer Engineering and Applications, 2009, 45(14): 198-200.(in Chinese)
[8] Tseng C H, Chang C W, Jwo D J. Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion [J]. Sensors, 2011, 11(2):2090-2111.DOI:10.3390/s110202090.
[9] Farrell J, Barth M.The global positioning system and inertial navigation [M]. New York: McGraw-Hill, 1999.
[10] Sun Z, Chen Y. Extraction of vortex flowmeter frequency by Burg algorithm based AR model spectral estimation [J]. Journal of Central South University, 2013, 44(4):1684-1688.(in Chinese)
[11] Hao F, Shi J F, Zhang Z S, et al. Image adaptive filtering using general auto-regressive model[J]. Optics & Precision Engineering, 2014, 22(1):186-192.DOI:10.3788/ope.20142201.0186. (in Chinese)
[12] Liu M, Liu Y, Su B K. Application of improved two-stage Kalman filter in error model identification of inertial navigation platform [J]. Journal of Jilin University, 2009, 39(3):819-823.(in Chinese)
[13] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//2007 IEEE International Conference on Robotics and Automation.Roma, Italy, 2007: 3565-3572.DOI:10.1109/ROBOT.2007.364024.

Memo

Memo:
Biographies: Xu Qimin(1989—), male, graduate; Li Xu(corresponding author), male, doctor, associate professor, lixu.mail@163.com.
Foundation items: The National Natural Science Foundation of China(No.61273236), the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637), China Scholarship Council.
Citation: Xu Qimin, Li Xu, Li Bin, et al. An interacting multiple model-based two-stage Kalman filter for vehicle positioning[J].Journal of Southeast University(English Edition), 2017, 33(2):177-181.DOI:10.3969/j.issn.1003-7985.2017.02.009.
Last Update: 2017-06-20