[1] Abdel-Aty M A, Kitamura R, Jovanis P P. Exploring route choice behavior using geographic information system-based alternative routes and hypothetical travel time information input [J]. Transportation Research Record, 1995, 1493: 74-80.
[2] Lam T C, Small K A. The value of time and reliability: measurement from a value pricing experiment[J].Transportation Research Part E: Logistics and Transportation Review, 2001, 37(2): 231-251. DOI:10.1016/s1366-5545(00)00016-8.
[3] Franklin J, Karlstrom A. Travel time reliability for Stockholm roadways: Modeling mean lateness factor [J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2134: 106-113. DOI:10.3141/2134-13.
[4] Bell M G H, Cassir C. Risk-averse user equilibrium traffic assignment: An application of game theory[J]. Transportation Research Part B: Methodological, 2002, 36(8): 671-681. DOI:10.1016/s0191-2615(01)00022-4.
[5] Szeto W, O’Brien L, O’Mahony M. Generalisation of the risk-averse traffic assignment [J]. Transportation and Traffic Theory, 2007, 17: 127-153.
[6] Xu H, Zhou J, Xu W. A decision-making rule for modeling travelers’ route choice behavior based on cumulative prospect theory[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(2): 218-228. DOI:10.1016/j.trc.2010.05.009.
[7] Lo H K, Luo X W, Siu B W Y. Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B: Methodological, 2006, 40(9): 792-806. DOI:10.1016/j.trb.2005.10.003.
[8] Wu X. Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach[J]. Transportation Research Part B: Methodological, 2015, 80: 275-290. DOI:10.1016/j.trb.2015.07.009.
[9] Nie Y M. Multi-class percentile user equilibrium with flow-dependent stochasticity [J]. Transportation Research Part B: Methodological, 2011, 45(10): 1641-1659. DOI:10.1016/j.trb.2011.06.001.
[10] Chen A, Zhou Z. The α-reliable mean-excess traffic equilibrium model with stochastic travel times[J]. Transportation Research Part B: Methodological, 2010, 44(4): 493-513. DOI:10.1016/j.trb.2009.11.003.
[11] Xu X, Chen A, Cheng L, et al. A link-based mean-excess traffic equilibrium model under uncertainty[J]. Transportation Research Part B: Methodological, 2017, 95: 53-75. DOI:10.1016/j.trb.2016.10.018.
[12] Szeto W Y, O’Brien L, O’Mahony M. Risk-averse traffic assignment with elastic demands: NCP formulation and solution method for assessing performance reliability [J]. Networks and Spatial Economics, 2006, 6(3/4): 313-332. DOI:10.1007/s11067-006-9286-7.
[13] Watling D. User equilibrium traffic network assignment with stochastic travel times and late arrival penalty[J]. European Journal of Operational Research, 2006, 175(3): 1539-1556. DOI:10.1016/j.ejor.2005.02.039.
[14] Wang J Y T, Ehrgott M, Chen A. A bi-objective user equilibrium model of travel time reliability in a road network[J]. Transportation Research Part B: Methodological, 2014, 66: 4-15. DOI:10.1016/j.trb.2013.10.007.
[15] Sun C, Cheng L, Zhu S, et al. Multi-criteria user equilibrium model considering travel time, travel time reliability and distance [J/OL]. Transportation Research Part D: Transport and Environment, 2017. http://www.sciencedirect.com/science/article/pii/S1361920916304928. DOI:10.1016/j.trd.2017.03.002.
[16] Ji X, Ban X J, Li M, et al. Non-expected route choice model under risk on stochastic traffic networks [J/OL]. Networks and Spatial Economics, 2017. https://link.springer.com/journal/11067. DOI:10.1007/s11067-017-9344-3.
[17] Nguyen S, Dupuis C. An efficient method for computing traffic equilibria in networks with asymmetrictransportation costs [J]. Transportation Science, 1984, 18(2): 185-202. DOI:10.1287/trsc.18.2.185.
[18] National Research Council. Highway capacity manual[M]. Washington, DC, USA: Transportation Research Board, 2000.