|Table of Contents|

[1] Zhou Binghai, Lu Yubin,. Improved PSO for integrating dynamic cell formationand layout problems [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 409-415. [doi:10.3969/j.issn.1003-7985.2017.04.004]
Copy

Improved PSO for integrating dynamic cell formationand layout problems()
改进粒子群算法集成解决动态单元构建与布局问题
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
409-415
Research Field:
Mechanical Engineering
Publishing date:
2017-12-30

Info

Title:
Improved PSO for integrating dynamic cell formationand layout problems
改进粒子群算法集成解决动态单元构建与布局问题
Author(s):
Zhou Binghai Lu Yubin
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
周炳海 陆裕斌
同济大学机械与能源工程学院, 上海201804
Keywords:
dynamic cellular manufacturing system cell formation and layout communication learning strategy dynamic multi-swarm particle swarm optimization algorithm
动态单元制造系统 单元构建与布局 沟通学习策略 动态多种群粒子群优化算法
PACS:
TH165
DOI:
10.3969/j.issn.1003-7985.2017.04.004
Abstract:
To decrease the impact of shorter product life cycles, dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized. First, CFPs and CLPs were formally described. Due to the changes of product demands and the limit of machine capacity, the existing layout needed to be rearranged to a high degree. Secondly, a mathematical model was established for the objective function of minimizing the total costs. Thirdly, a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed. To avoid falling into local optimum and slow convergence, each swarm shared their optimal locations before regrouping. Finally, simulation experiments were conducted under different conditions. Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms.
为了降低产品生命周期缩短对生产系统的影响, 对动态单元构建与布局问题同时进行了优化.首先介绍了单元构建与布局问题, 考虑到不同阶段的产品需求变化及机器产能限制, 适当地将单元进行重新布置.然后, 以最小化物料搬运费用为目标函数, 建立了数学规划模型.其次, 提出了基于沟通学习策略的动态多种群粒子群算法, 使各种群粒子重组之前以规定策略进行位置共享, 避免陷入局部最优和收敛较慢的困境.最后, 在不同条件下进行了仿真对比实验, 结果表明, 所提出的算法具有更好的收敛稳定性以及更快的收敛速度.

References:

[1] Hearago S S. Group technology and cellular manufacturing [J]. IEEE Transactions on Systems, Man and Cybernetic, 1994, 24(2): 203-215. DOI:10.1109/21.281420.
[2] Tompkins J A, White J A, Bozer Y A, et al. Facilities planning [M]. 2nd ed. New York: John Wiley, 1996.
[3] Bhandwale A, Kesavadas T. A methodology to incorporate product mix variations in cellular manufacturing[J]. Journal of Intelligent Manufacturing, 2008, 19(1):71-85. DOI:10.1007/s10845-007-0046-4.
[4] Nouri H, Tang S H, Hang Tuah B T, et al. BASE: A bacteria foraging algorithm for cell formation with sequence data[J]. Journal of Manufacturing Systems, 2010, 29(2):102-110. DOI:10.1016/j.jmsy.2010.11.004.
[5] Ameli M S J, Arkat J. Cell formation with alternative process routings and machine reliability consideration[J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(7/8):761-768. DOI:10.1007/s00170-006-0753-6.
[6] Mahdavi I, Aalaei A, Paydar M M, et al. A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system[J]. Journal of Manufacturing Systems, 2012, 31(2):214-223. DOI:10.1016/j.jmsy.2011.07.007.
[7] Kia R, Shirazi H, Javadian N, et al. A multi-objective model for designing a group layout of a dynamic cellular manufacturing system[J]. Journal of Industrial Engineering International, 2013, 9(1):1-14. DOI:10.1186/2251-712x-9-8.
[8] Tavakkoli-Moghaddam R, Aryanezhad M B, Safaei N, et al. Solving a dynamic cell formation problem using metaheuristics[J]. Applied Mathematics and Computation, 2005, 170(2):761-780. DOI:10.1016/j.amc.2004.12.021.
[9] Ossama M, Youssef A M A, Shalaby M A. A multi-period cell formation model for reconfigurable manufacturing systems [J]. Procedia CIRP, 2014, 17:130-135. DOI:10.1016/j.procir.2014.01.120.
[10] Bagheri M, Bashiri M. A hybrid genetic and imperialist competitive algorithm approach to dynamic cellular manufacturing system [J]. Proc IMechE Part B: Jounal of Engineering Manufacture, 2014, 228(3):458-470. DOI:10.1177/0954405413500662.
[11] Kia R, Baboli A, Javadian N, et al. Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing[J]. Computers and Operations Research, 2012, 39(11):2642-2658. DOI:10.1016/j.cor.2012.01.012.
[12] Izadinia N, Eshghi K, Salmani M H. A robust model for multi-floor layout problem[J]. Computers and Industrial Engineering, 2014, 78:127-134. DOI:10.1016/j.cie.2014.09.023.
[13] Mahdavi I, Teymourian E, Baher N T, et al. An integrated model for solving cell formation and cell layout problem simultaneously considering new situations[J]. Journal of Manufacturing Systems, 2013, 32(4):655-663. DOI:10.1016/j.jmsy.2013.02.003.
[14] Wu X, Chu C H, Wang Y, et al. Genetic algorithms for integrating cell formation with machine layout and scheduling[J]. Computers and Industrial Engineering, 2007, 53(2):277-289. DOI:10.1016/j.cie.2007.06.021.
[15] King J R, Nakornchai V. Machine-component group formation in group technology: Review and extension [J]. International Journal of Production Research, 1982, 20(2):117-133 DOI:10.1080/00207548208947754.

Memo

Memo:
Biography: Zhou Binghai(1965—), male, doctor, professor, bhzhou@tongji.edu.cn
Foundation item: The National Natural Science Foundation of China(No.71471135).
Citation: Zhou Binghai, Lu Yubin. Improved PSO for integrating dynamic cell formation and layout problems[J].Journal of Southeast University(English Edition), 2017, 33(4):409-415.DOI:10.3969/j.issn.1003-7985.2017.04.004.
Last Update: 2017-12-20