[1] Zhang L, Zhang Z. Impact of road slope on water film thickness [J]. Journal of Chongqing Jiaotong University(Natural Science), 2013, 32(3): 404-406.(in Chinese)
[2] Zhou Q. Study on the theoretical calculation of the thickness of water film on road surface and its effect on the pavement skid resistance condition [D]. Nanjing: School of Civil Engineering, Nanjing Forestry University, 2013.(in Chinese)
[3] Cristina C M, Sansalone J J. Kinematic wave model of urban pavement rainfall-runoff subject to traffic loadings [J]. Journal of Environmental Engineering, 2003, 129(7): 629-636. DOI:10.1061/(asce)0733-9372(2003)129:7(629).
[4] Wolff A. Simulation of pavement surface runoff using the depth-averaged shallow water equations [D]. Stuttgart: Institute for Transport and Streets, University of Stuttgart. 2013:15-17.
[5] Wang Z L, Geng Y F. 2-D shallow water equations with porosity and their numerical scheme on unstructured grids [J]. Water Science and Engineering, 2013, 6(1): 91-105.
[6] Li H, Xu J C, Li C Z, et al. The evaluation of intensive land use in the development zone based on BP artificial neural network: A case of Zhejiang province [J]. Areal Research and Development, 2014, 30(4): 122-125.(in Chinese)
[7] Ceylan H, Bayrak M B, Gopalakrishnan K. Neural networks applications in pavement engineering: A recent survey [J]. International Journal of Pavement Research and Technology, 2014, 7(6): 434-444.
[8] Roberts C A, Attoh-Okine N O. A comparative analysis of two artificial neural networks using pavement performance prediction [J]. Computer-Aided Civil and Infrastructure Engineering, 1998, 13(5): 339-348. DOI:10.1111/0885-9507.00112.
[9] Shafabakhsh G A, Talebsafa M, Motamedi M, et al. Analytical evaluation of load movement on flexible pavement and selection of optimum neural network algorithm [J]. KSCE Journal of Civil Engineering, 2015, 19(6):1738-1746.
[10] Londhe S N, Shah S, Dixit P R, et al. A coupled numerical and artificial neural network model for improving location specific wave forecast [J]. Applied Ocean Research, 2016, 59:483-491. DOI:10.1016/j.apor.2016.07.004.
[11] Ji T J, Huang X M, Liu Q Q, et al. Prediction model of rain water depth on road surface [J]. Journal of Transportation Engineering, 2004, 4(3): 1-3.(in Chinese)
[12] Tahershamsi A, Tabatabai M R M, Shirkhani R. An evaluation model of artificial neural network to predict stable width in gravel bed rivers [J]. International Journal of Environmental Science & Technology, 2012, 9(2):333-342. DOI:10.1007/s13762-012-0036-8.
[13] Plati C, Georgiou P, Papavasiliou V. Simulating pavement structural condition using artificial neural networks [J]. Structure and Infrastructure Engineering, 2016, 12(9): 1127-1136.
[14] Vimala J, Latha G, Venkatesan R. Real time wave forecasting using artificial neural network with vary input parameter [J]. India Journal of Geo-Marine Sciences, 2014, 43(1): 82-87.
[15] Gajewski J, Sadowski T. Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating artificial neural networks and finite element method [J]. Computational Materials Science, 2014, 82(3): 114-117. DOI:10.1016/j.commatsci.2013.09.025.
[16] Jiao B, Ye M X. Determination of hidden unit number in a BP neural network [J]. Journal of Shanghai Dianji University, 2013, 16(3): 113-116.(in Chinese)
[17] Shen H Y, Wang Z X, Gao C Y, et al. Determining the number of BP neural network hidden layer units [J]. Journal of Tianjin University of Technology, 2008, 24(5): 13-15.(in Chinese)
[18] Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models [J]. Ecological Modelling, 2003, 160(3): 249-264. DOI:10.1016/s0304-3800(02)00257-0.
[19] Liu B Y, Guan Y B, Ding X J, et al. JTGT D33—2012 Specifications for drainage design of highway [S]. Beijing: China Communications Press, 2012.(in Chinese)