|Table of Contents|

[1] Hu Xiaoping, Cao Jie,. Pricing of discrete barrier options based on an analytical method [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 511-516. [doi:10.3969/j.issn.1003-7985.2017.04.019]
Copy

Pricing of discrete barrier options based on an analytical method()
基于解析方法的离散障碍期权定价
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
511-516
Research Field:
Economy and Management
Publishing date:
2017-12-30

Info

Title:
Pricing of discrete barrier options based on an analytical method
基于解析方法的离散障碍期权定价
Author(s):
Hu Xiaoping1 Cao Jie2
1School of Economics and Management, Southeast University, Nanjing 210096, China
2School of Mathematical Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
胡小平1 曹杰2
1东南大学经济管理学院, 南京210096; 2南京信息工程大学数理学院, 南京210044
Keywords:
discrete monitored barrier options pricing analytical method
离散监督 障碍期权 定价 解析方法
PACS:
F830.59
DOI:
10.3969/j.issn.1003-7985.2017.04.019
Abstract:
The problem of analytically pricing the discrete monitored European barrier options is studied under the assumption of the Black-Scholes market. First, using variable transformation, the mean vector and covariance matrix of multi-dimensional marginal distribution are given. Secondly, the analytical pricing formulas of the discrete monitored up-knock-out European call option and the discrete monitored down-knock-out European put option are obtained by using the conditional probability and the characteristics of the multi-dimensional normal distribution. Finally, the effects of the discrete monitoring barriers on the prices of the barrier options are discussed and analyzed. The research results state that the price of the discrete monitored up-knock-out European call option increases with the increase in the up barrier, and the price of the discrete monitored down-knock-out European put option decreases with the increase in the down barrier.
在Black-Scholes市场假设下, 研究了离散监督障碍期权的解析定价问题.首先, 通过变量变换, 给出了多维边际分布的平均向量和协方差矩阵.其次, 通过使用条件概率和多维正态分布的特征, 获得离散监督向上敲出欧式看涨期权和离散监督向下敲出欧式看跌期权的解析定价公式.最后, 讨论和分析了离散监督障碍对障碍期权价格的影响.研究结果表明, 随着上障碍的增大, 离散监督向上敲出的欧式看涨期权价格变大;离散监督向下敲出欧式看跌期权价格随着下障碍的增加而变小.

References:

[1] Merton R C. Theory of rational option pricing[J]. The Bell Journal of Economics and Management Science, 1973, 4(1):141-183. DOI:10.2307/3003143.
[2] Chen W, Xu X, Zhu S P. Analytically pricing double barrier options based on a time-fractional Black-Scholes equation[J]. Computers & Mathematics with Applications, 2015, 69(12): 1407-1419. DOI:10.1016/j.camwa.2015.03.025.
[3] Appolloni E, Gaudenzi M, Zanette A. The binomial interpolated lattice method for step double barrier options[J]. International Journal of Theoretical and Applied Finance, 2014, 17(6): 1450035-1-1450035-26. DOI:10.1142/s0219024914500356.
[4] Boyarchenko M, Levendorskiǐ S. Ghost calibration and the pricing of barrier options and CDS in spectrally one-sided Lévy models: The parabolic Laplace inversion method[J]. Quantitative Finance, 2015, 15(3): 421-441. DOI:10.1080/14697688.2014.941914.
[5] Chandra S R, Mukherjee D, SenGupta I. Pricing of barrier option under Lévy process: A PIDE and Mellin transform approach[J]. Mathematics, 2016, 4(1): 2-1-2-18. DOI:10.3390/math4010002.
[6] Thakoor N, Tangman D Y, Bhuruth M. Efficient and high accuracy pricing of barrier options under the CEV diffusion[J]. Journal of Computational and Applied Mathematics, 2014, 259: 182-193. DOI:10.1016/j.cam.2013.05.009.
[7] Fajardo J. Barrier style contracts under Lévy processes: An alternative approach[J]. Journal of Banking & Finance, 2015, 53: 179-187. DOI:10.1016/j.jbankfin.2015.01.002.
[8] Cassagnes A, Chen Y, Ohashi H. Path integral pricing of outside barrier Asian options[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 394: 266-276. DOI:10.1016/j.physa.2013.09.067.
[9] Zhang L, Zhang W, Xu W, et al. A modified least-squares simulation approach to value American barrier options[J]. Computational Economics, 2014, 44(4): 489-506. DOI:10.1016/j.physa.2013.09.067.
[10] Dokuchaev N. Degenerate backward SPDEs in bounded domains and applications to barrier options[J]. Discrete and Continuous Dynamical Systems Series A, 2015, 35(11): 5317-5334. DOI:10.3934/dcds.2015.35.5317.
[11] Dai T S, Chiu C Y. Accurate formulas for evaluating barrier options with dividends payout and the application in credit risk valuation[M]// Handbook of Financial Econometrics and Statistics. Springer, 2015: 1771-1800. DOI:10.1007/978-1-4614-7750-1-65.
[12] Escobar M, Götz B, Neykova D, et al. Pricing two-asset barrier options under stochastic correlation via perturbation[J]. International Journal of Theoretical and Applied Finance, 2015, 18(3): 1550018-1-1550018-44. DOI:10.1142/s0219024915500181.
[13] Jun D, Ku H. Analytic solution for American barrier options with two barriers[J]. Journal of Mathematical Analysis and Applications, 2015, 422(1): 408-423. DOI:10.1016/j.jmaa.2014.08.047.
[14] Kou S G. On pricing of discrete barrier options[J]. Statistica Sinica, 2003, 13(4): 955-964.
[15] Aitsahlia F, Lai T L. Valuation of discrete barrier and hindsight options[J]. The Journal of Financial Engineering, 1997, 6(2):169-177.
[16] Broadie M, Glasserman P, Kou S. A continuity correction for discrete barrier options[J].Mathematical Finance, 1997, 7(4):325-349. DOI:10.1111/1467-9965.00035.
[17] Sullivan M A. Pricing discretely monitored barrier options[J]. Journal of Computational Finance, 2000, 3(4): 35-52. DOI:10.21314/jcf.2000.048.
[18] Duan J C, Dudley E, Gauthier G, et al. Pricing discretely monitored barrier options by a Markov Chain[J]. Journal of Derivatives, 2003, 10(4): 9-31. DOI:10.3905/jod.2003.319203.
[19] Ahmadian D, Ballestra L V. A numerical method to price discrete double barrier options under a constant elasticity of variance model with jump diffusion[J]. International Journal of Computer Mathematics, 2014, 92(11):2310-2328. DOI:10.1080/00207160.2014.986114.
[20] Li L F, Linetsky V. Discretely monitored first passage problems and barrier options: An eigenfunction expansion approach[J]. Finance and Stochastics, 2015, 19(4):941-977. DOI:10.1007/s00780-015-0271-1.
[21] Farnoosh R, Sobhani A, Rezazadeh H, et al. Numerical method for discrete double barrier option pricing with time-dependent parameters[J]. Computers & Mathematics with Applications, 2015, 70(8):2006-2013.
[22] Rostan P, Rostan A, Racicot F É. A probabilistic Monte Carlo model for pricing discrete barrier and compound real options[J]. Journal of Derivatives & Hedge Funds, 2014, 20(2):113-126. DOI:10.1057/jdhf.2014.13.
[23] Rostan P, Rostan A, Racicot F É. Pricing discrete double barrier options with a numerical method[J]. Journal of Asset Management, 2015, 16(4):243-271. DOI:10.1057/jam.2015.6.
[24] Umezawa Y, Yamazaki A. Pricing path-dependent options with discrete monitoring under time-changed Lévy processes[J]. Applied Mathematical Finance, 2015, 22(2): 133-161. DOI:10.1080/1350486x.2014.960529.
[25] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. DOI:10.1086/260062.

Memo

Memo:
Biography: Hu Xiaoping(1971—), male, doctor, associate professor, hxpnj@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.71273139), the Soft Science Foundation of China(No.2010GXS5B147), the National Public Sector(Weather)Special Fund(No.GYHY201106019).
Citation: Hu Xiaoping, Cao Jie.Pricing of discrete barrier options based on an analytical method[J].Journal of Southeast University(English Edition), 2017, 33(4):511-516.DOI:10.3969/j.issn.1003-7985.2017.04.019.
Last Update: 2017-12-20