|Table of Contents|

[1] Liu Linlin, Wang Shuanhong,. Construction of a class of H-pseudoalgebras [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 517-520. [doi:10.3969/j.issn.1003-7985.2017.04.020]
Copy

Construction of a class of H-pseudoalgebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
517-520
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2017-12-30

Info

Title:
Construction of a class of H-pseudoalgebras
Author(s):
Liu Linlin Wang Shuanhong
School of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
cocommutative Hopf algebra H-pseudoalgebra (~overH)-pseudoalgebra (H R)-pseudoalgebra
PACS:
O153
DOI:
10.3969/j.issn.1003-7985.2017.04.020
Abstract:
Let H be a cocommutative Hopf algebra. First, a new class (~overH)-pseudoalgebras of H-pseudoalgebras are defined by changing the regular action(i.e. left multiplication)of H on itself into an adjoint action. Secondly, a class of(H, R)-pseudoalgebras are studied by generalizing the above construction when(H, R)is a quasitriangular Hopf algebra. At the same time, the(H, R)-pseudoalgebra is constructed by both the usual algebra and the tensor product of(H, R)-pseudoalgebras. Finally, some examples of the(H, R)-pseudoalgebra are given explicitly, and the conditions for a Hopf algebra to be an(H, R)-pseudoalgebra(resp. H-pseudoalgebra)are discussed.

References:

[1] Kac V. Vertex algebras for beginners [M]. American Mathematical Society, 1998.
[2] Bakalov B, D’Andrea A, Kac V G. Theory of finite pseudoalgebras [J]. Advances in Mathematics, 2001, 162(1): 1-140. DOI:10.1006/aima.2001.1993.
[3] Boyallian C, Liberati J Y. On pseudo-bialgebras [J]. Journal of Algebra, 2012, 372: 1-34. DOI:10.1016/j.jalgebra.2012.08.009.
[4] Dorfman I. Dirac structures and integrability of nonlinear evolution equations [M]. Wiley & Sons, 1993.
[5] Gelfand I M, Dorfman I J. Hamiltonian operators and infinite-dimensional Lie algebra [J]. Functional Analysis and Its Applications, 1981, 15(3): 173-187.
[6] Xu X P. Equivalence of conformal superalgebras to Hamiltonian superoperators [J]. Algebra Colloquium, 2001, 8(1): 63-92.
[7] Sun Q. Generalization of H-pseudoalgebraic structures [J]. Journal of Mathematical Physics, 2012, 53(1): 012105. DOI:10.1063/1.3665708.
[8] Wu Z. Leibniz H-pseudoalgebras [J]. Journal of Algebra, 2015, 437: 133. DOI:10.1016/j.jalgebra.2015.04.019.
[9] Sweedler M E. Hopf algebras [M]. New York: W. A. Benjamin, 1969.
[10] Chari V, Pressley A. A guide to quantum groups[M]. Cambridge, UK: Cambridge University Press, 1995.

Memo

Memo:
Biographies: Liu Linlin(1990—), female, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@yahoo.com.
Foundation items: The National Natural Science Foundation of China(No.11371088), the Natural Science Foundation of Jiangsu Province(No.BK20171348).
Citation: Liu Linlin, Wang Shuanhong. Construction of a class of H-pseudoalgebras[J].Journal of Southeast University(English Edition), 2017, 33(4):517-520.DOI:10.3969/j.issn.1003-7985.2017.04.020.
Last Update: 2017-12-20