|Table of Contents|

[1] Fan Chen, Wang Rong, Wang Zhigong,. Design of a 12-Gbit/s CMOS DNFFCGdifferential transimpedance amplifier [J]. Journal of Southeast University (English Edition), 2018, 34 (1): 1-5. [doi:10.3969/j.issn.1003-7985.2018.01.001]
Copy

Design of a 12-Gbit/s CMOS DNFFCGdifferential transimpedance amplifier()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 1
Page:
1-5
Research Field:
Information and Communication Engineering
Publishing date:
2018-03-20

Info

Title:
Design of a 12-Gbit/s CMOS DNFFCGdifferential transimpedance amplifier
Author(s):
Fan Chen Wang Rong Wang Zhigong
Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China
Keywords:
very-short-reach optoelectronic integrated circuit negative feedback feed-forward common gate trans-impedance gain
PACS:
TN915
DOI:
10.3969/j.issn.1003-7985.2018.01.001
Abstract:
A 12-Gbit/s low-power, wide-bandwidth CMOS(complementary metal oxide semiconductor)dual negative feedback feed-forward common gate(DNFFCG)differential trans-impedance amplifier(TIA)is presented for the very-short-reach(VSR)optoelectronic integrated circuit(OEIC)receiver. The dominant pole of the input node is shifted up to a high frequency, and thus the bandwidth of the CMOS DNFFCG TIA is improved. Besides, two negative feedback loops are used to reduce the input impedance and further increase the bandwidth. The proposed TIA was fabricated using TSMC 0.18 μm CMOS technology. The whole circuit has a compact chip area, the core area of which is only 0.003 6 mm2. The power consumption is 14.6 mW excluding 2-stage differential buffers. The test results indicate that the 3 dB bandwidth of 9 GHz is achieved with a 1.8 V supply voltage and its trans-impedance gain is 49.2 dBΩ. The measured average equivalent input noise current density is 28.1 pA/Hz1/2. Under the same process conditions, the DNFFCG has better gain bandwidth product compared with those in the published papers.

References:

[1] Miller D. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 2009, 97(7): 1166-1185. DOI:10.1109/jproc.2009.2014298.
[2] Huang S H, Chen W Z, Chang Y W, et al. A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-μm CMOS technology [J]. IEEE Journal of Solid-State Circuits, 2011, 46(5):1158-1169. DOI: 10.1109/JSSC.2011.2116430.
[3] Pan Q, Hou Z X, Li Y, et al. A 0.5-V P-well/Deep N-well photodetector in 65-nm CMOS for monolithic 850-nm optical receivers [J]. IEEE Photonics Technology Letters, 2014, 26(12):1184-1187.
[4] Wu C H, Lee C H, Chen W S, et al. CMOS wideband amplifiers using multiple inductive-series peaking technique[J]. IEEE Journal of Solid-State Circuits, 2005, 40(2):548-552.
[5] Analui B, Hajimiri A. Bandwidth enhancement for transimpedance amplifiers[J]. IEEE Journal of Solid-State Circuits, 2004, 39(8): 1263-1270. DOI:10.1109/jssc.2004.831783.
[6] Lu Z, Yeo K S, Lim W M, et al. Design of a CMOS broadband transimpedance amplifier with active feedback[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2010, 18(3): 461-472. DOI:10.1109/tvlsi.2008.2012262.
[7] Ahmadi P, Haslett, J W, Belostotski L, et al.10-Gb/s 0.13-CMOS inductorless modified-RGC transimpedance amplifier [J]. IEEE Transactions on Circuits and Systems-Ⅰ-Regular Papers, 2015, 62(8):1971-1980.
[8] Chen D, Yeo K S, Shi X, et al. Cross-coupled current conveyor based CMOS transimpedance amplifier for broadband data transmission[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems, 2013, 21(8):1516-1525. DOI:10.1109/tvlsi.2012.2211086.
[9] Momeni O, Hashemi H, Afshari E. A 10-Gb/s inductorless transimpedance amplifier[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2010, 57(12): 926-930. DOI:10.1109/tcsii.2010.2087971.
[10] Gu G W, Zhu E, Lin Y. Design of 10 Gbit/s burst-mode transimpedance preamplifier for PON system [J]. Journal of Southeast University(English Edition), 2012, 28(4):398-403.
[11] Taghavi M H, Belostotski L, Haslett J W. A CMOS low-power cross-coupled immittance-converter transimpedance amplifier[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(6): 403-405. DOI:10.1109/lmwc.2015.2421253.

Memo

Memo:
Biographies: Fan Chen(1988—), male, Ph.D. candidate; Wang Rong(corresponding author), female, doctor, associate professor, wangrong@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61306069).
Citation: Fan Chen, Wang Rong, Wang Zhigong. Design of a 12-Gbit/s CMOS DNFFCG differential transimpedance amplifier[J].Journal of Southeast University(English Edition), 2018, 34(1):1-5.DOI:10.3969/j.issn.1003-7985.2018.01.001.
Last Update: 2018-03-20