|Table of Contents|

[1] Wang Jixin, Wang Yan, Zhai Xinting, Huang Yajun, et al. Automatic determination method of optimal thresholdbased on the bootstrapping technology [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 208-212. [doi:10.3969/j.issn.1003-7985.2018.02.010]
Copy

Automatic determination method of optimal thresholdbased on the bootstrapping technology()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
208-212
Research Field:
Mechanical Engineering
Publishing date:
2018-06-20

Info

Title:
Automatic determination method of optimal thresholdbased on the bootstrapping technology
Author(s):
Wang Jixin1 Wang Yan1 Zhai Xinting1 Huang Yajun2 Wang Zhenyu2
1 School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China
2 Shantui Construction Machinery Co., Ltd., Jining 272073, China
Keywords:
load spectrum peak over threshold threshold selection bootstrapping technology mean squared error
PACS:
TH243
DOI:
10.3969/j.issn.1003-7985.2018.02.010
Abstract:
In order to predict the extreme load of the mechanical components during the entire life, an automatic method based on the bootstrapping technology(BT)is proposed to determine the most suitable threshold. Based on all the turning points of the load history and a series of thresholds estimated in advance, the generalized Pareto distribution is established to fit the exceedances. The corresponding distribution parameters are estimated with the maximum likelihood method. Then, BT is employed to calculate the mean squared error(MSE)of each estimated threshold based on the exceedances and the specific distribution parameters. Finally, the threshold with the smallest MSE will be the optimal one. Compared to the kurtosis method and the mean excess function method, the average deviation of the probability density function of exceedances determined by BT reduces by 38.52% and 29.25%, respectively. Moreover, the quantile-quantile plot of the exceedances determined by BT is closer to a straight line. The results suggest the improvement of the modeling flexibility and the determined threshold precision. If the exceedances are insufficient, BT will enlarge their amount by resampling to solve the instability problem of the original distribution parameters.

References:

[1] Gomes M I, Guillou A. Extreme value theory and statistics of univariate extremes: A review[J]. International Statistical Review, 2014, 83(2): 263-292. DOI:10.1111/insr.12058.
[2] Mailhot A, Lachance-Cloutier S, Talbot G, et al. Regional estimates of intense rainfall based on the peak-over-threshold(POT)approach[J]. Journal of Hydrology, 2013, 476:188-199. DOI:10.1016/j.jhydrol.2012.10.036.
[3] Naess A, Haug E. Extreme value statistics of wind speed data by the POT and ACER methods[J]. Journal of Offshore Mechanics and Arctic Engineering, 2010, 132(4): 041604. DOI:10.1115/1.4001419.
[4] Bernardara P, Mazas F, Weiss J, et al. On the two step threshold selection for over-threshold modelling[C]// Proceedings of 33rd Conference on Coastal Engineering. Santander, Spain, 2012(33):42. DOI:10.9753/icce.v33.management.42.
[5] Scarrott C J, Macdonald A. A review of extreme value threshold estimation and uncertainty quantification[J]. REVSTAT–Statistical Journal, 2012, 10(1):33-60.
[6] You Z J. Discussion of “a multi-distribution approach to pot methods for determining extreme wave heights” by Mazas and Hamm, [Coastal Engineering, 58:385-394][J]. Coastal Engineering, 2012, 61:49-52. DOI:10.1016/j.coastaleng.2011.11.004.
[7] Mazas F, Hamm L. Reply to discussion by Z.J. You of “A multi-distribution approach to POT methods for determining extreme wave heights” by Mazas and Hamm[J]. Coastal Engineering, 2012, 65:16-18. DOI:10.1016/j.coastaleng.2012.02.008.
[8] Mazas F, Hamm L. A multi-distribution approach to POT methods for determining extreme wave heights[J]. Coastal Engineering, 2011, 58(5):385-394. DOI:10.1016/j.coastaleng.2010.12.003.
[9] Gomes M I, Figueiredo F, Martins M J, et al. Resampling methodologies and reliable tail estimation[J]. South African Statistical Journal, 2015, 49(1): 1-20.
[10] Li F, Bicknell C. A comparison of extreme wave analysis methods with 1994—2010 offshore Perth dataset[J]. Coastal Engineering, 2012, 69:1-11. DOI:10.1016/j.coastaleng.2012.05.006.
[11] Thompson P, Cai Y, Reeve D, et al. Automated threshold selection methods for extreme wave analysis[J]. Coastal Engineering, 2009, 56(10):1013-1021. DOI:10.1016/j.coastaleng.2009.06.003.
[12] Fukutome S, Liniger M A, Sueveges M. Automatic threshold and run parameter selection: a climatology for extreme hourly precipitation in Switzerland[J]. Theoretical and Applied Climatology, 2015, 120(3/4):403-416. DOI:10.1007/s00704-014-1180-5.
[13] Mooney C Z, Duval R D. A nonparametric approach to statistical inference[J].Technometrics, 1993, 36(4):435-436. DOI: 10.2307/1269981.
[14] Efron B, Tibshirani R J. An introduction to the bootstrap[J]. Chapman and Hall, 1993, 23(2):49-54. DOI:10.1111/1467-9639.00050.
[15] Caers J, Maes M A. Identifying tails, bounds and end-points of random variables[J]. Structural Safety, 1998, 20(1):1-23. DOI:10.1016/s0167-4730(97)00036-2.
[16] Shi D J. Practical methods of extreme value statistics[M]. Tianjin: Tianjin Science and Technology Press, 2006.(in Chinese)

Memo

Memo:
Biography: Wang Jixin(1975—), male, doctor, professor, jxwang@jlu.edu.cn.
Foundation item: The National Science and Technology Pillar Program of China(No.2015BAF07B00).
Citation: Wang Jixin, Wang Yan, Zhai Xinting, et al.Automatic determination method of optimal threshold based on the bootstrapping technology[J].Journal of Southeast University(English Edition), 2018, 34(2):208-212.DOI:10.3969/j.issn.1003-7985.2018.02.010.
Last Update: 2018-06-20