[1] Liang Y C, Zeng Y H, Phe E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(4): 1326-1337.
[2] Tumuluru V K, Wang P, Niyato D. Channel status prediction for cognitive radio networks [J]. Wireless Communications & Mobile Computing, 2012, 12(10): 862-874. DOI:10.1002/wcm.1017.
[3] Eltholth A A. Spectrum prediction in cognitive radio systems using a wavelet neural network [C]// 2016 24th International Conference on Software Telecommunications & Computer Networks. Split, Croatia, 2016: 1-6. DOI:10.1109/softcom.2016.7772181.
[4] Shamsi N, Mousavinia A, Amirpour H. A channel state prediction for multi-secondary users in a cognitive radio based on neural network [C]// 2013 International Conference on Electronics, Computer and Computation. Ankara, Turkey, 2013: 1-4. DOI:10.1109/icecco.2013.6718263.
[5] Bai S Y, Zhou X, Xu F J. “Soft decision” spectrum prediction based on back-propagation neural networks[C]// International Conference on Computing, Management and Telecommunications. Da Nang, Vietnam, 2014: 128-133.
[6] Yang J, Zhao H, Chen X. Genetic algorithm optimized training for neural network spectrum prediction[C]// IEEE International Conference on Computer & Communications. Chengdu, China, 2017: 2949-2954.
[7] Eltom H, Kandeepan S, Liang Y C, et al. HMM based cooperative spectrum occupancy prediction using hard fusion [C]// IEEE International Conference on Communications Workshops. Kuala Lumpur, Malaysia, 2016: 669-675.
[8] Jing T, Xing X S, Cheng W, et al. Cooperative spectrum Prediction in multi-PU multi-SU cognitive radio networks[C]// Proceedings of the 8th International Conference on Cognitive Radio Oriented Wireless Networks.Washington, DC, USA, 2013:502-511. DOI:10.4108/icst.crowncom.2013.252029.
[9] Barnes S D, Maharaj B T, Alfa A S. Cooperative prediction for cognitive radio networks[J]. Wireless Personal Communications, 2016, 89(4): 1177-1202. DOI:10.1007/s11277-016-3311-z.
[10] Sun D F, Song T C, Gu B, et al. Spectrum sensing and the utilization of spectrum opportunity tradeoff in cognitive radio network [J]. IEEE Communications Letters, 2016, 20(12): 2442-2445. DOI:10.1109/lcomm.2016.2605674.
[11] Chen J, Guo X, Zhang S. A spectrum access strategy for cloud-based cognitive radio networks[C]//International Conference on Wireless Communications & Signal Processing. Yangzhou, China, 2016:1-5.
[12] Chen Z, Guo N, Hu Z, et al. Channel state prediction in cognitive radio, Part Ⅱ: Single-user prediction [J]. Proceedings of IEEE Southeastcon, 2011, 670(8): 50-54. DOI:10.1109/secon.2011.5752904.
[13] Saroha S, Aggarwal S K. Multi step ahead forecasting of wind power by genetic algorithm based neuralnetworks[C]// 2014 6th IEEE Power India International Conference(PIICON).Delhi, India, 2014: 1-6.DOI:10.1109/poweri.2014.7117664.
[14] Zhang G Q, Patuwo B E, Hu M Y. Forecasting with artificial neural networks: The state of the art [J]. International Journal of Forecasting, 1998, 14(1): 35-62. DOI:10.1016/s0169-2070(97)00044-7.
[15] Ball G H, Hall J. Isodata, a novel method of data analysis and pattern classification [R]. Menlo Park, CA, USA: Stanford Research Institute, 1965.
[16] Zhou J, Shen Y, Shao S H, et al. Cooperative spectrum sensing scheme with hard decision based on location information in cognitive radio networks [J]. Wireless Personal Communications, 2013, 71(4): 2637-2656. DOI:10.1007/s11277-012-0961-3.
[17] Chair Z, Varshney P K. Optimal data fusion in multiple sensor detection systems [J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, 22(1): 98-101. DOI:10.1109/taes.1986.310699.
[18] Eghbali Y, Hassani H, Attari M A. Cooperative spectrum sensing by improved energy detector for heterogeneous environments in cognitive radio networks [C]// 6th International Symposium on Telecommunications. Tehran, Iran, 2013: 383-386. DOI:10.1109/istel.2012.6483017.