|Table of Contents|

[1] Zhu Hancheng, Song Tiecheng, Wu Jun, Li Xi, et al. Cooperative spectrum sensing algorithmbased on bilateral threshold selection against Byzantine attack [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 439-443. [doi:10.3969/j.issn.1003-7985.2018.04.004]
Copy

Cooperative spectrum sensing algorithmbased on bilateral threshold selection against Byzantine attack()
基于双边阈值的抗Byzantine攻击协作频谱感知算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
439-443
Research Field:
Information and Communication Engineering
Publishing date:
2018-12-20

Info

Title:
Cooperative spectrum sensing algorithmbased on bilateral threshold selection against Byzantine attack
基于双边阈值的抗Byzantine攻击协作频谱感知算法
Author(s):
Zhu Hancheng Song Tiecheng Wu Jun Li Xi Hu Jing
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
朱翰宬 宋铁成 吴俊 李茜 胡静
东南大学移动通信国家重点实验室, 南京 210096
Keywords:
cognitive radio Byzantine attack bilateral threshold misclassification probability recognition probability
认知无线电 Byzantine攻击 双边阈值 误筛概率 识别概率
PACS:
TN915
DOI:
10.3969/j.issn.1003-7985.2018.04.004
Abstract:
To deal with Byzantine attacks in 5G cognitive radio networks, a bilateral threshold selection-based algorithm is proposed in the spectrum sensing process. In each round, secondary uses(SUs)first submit the energy values and instantaneous detection signal-to-noise ratios(SNRs)to the fusion center(FC). According to detection SNRs, the FC conducts normalization calculations on the energy values. Then, the FC makes a sort operation for these normalized energy values and traverses all the possible mid-points between these sorted normalized energy values to maximize the classification accuracy of each SU. Finally, by introducing the recognition probability and misclassification probability, the distributions of the normalized energy values are analyzed and the bilateral threshold of classification accuracy is obtained via a target misclassification probability. Hence, the blacklist of malicious secondary users(MSUs)is obtained. Simulation results show that the proposed scheme outperforms the current mainstream schemes in correct sensing probability, false alarm probability and detection probability.
为了解决5G认知无线网络中的Byzantine攻击, 在频谱感知过程中提出了一种双边阈值筛选方案.在每个回合中, 从用户首先将感知能量值和检测信噪比提交给融合中心.根据检测信噪比, 融合中心对能量值进行归一化.然后, 对归一化能量值进行排序并遍历这些归一化能量值的中点, 以最大化从用户的分类准确率.此外, 通过引入识别概率和误筛概率, 分析了归一化能量值的分布, 从而推导了给定误筛概率情况下的恶意用户双边筛选阈值.最后, 通过该双边筛选阈值获得恶意用户名单.仿真结果表明:所提方案的主用户正确感知率、虚警和检测概率均要优于当前主流方案.

References:

[1] Haykin S. Cognitive radio:Brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220. DOI:10.1109/jsac.2004.839380.
[2] Guo H Y, Reisi N, Jiang W, et al. Soft combination for cooperative spectrum sensing in fading channels[J]. IEEE Access, 2017, 5: 975-986. DOI:10.1109/access.2016.2628860.
[3] Peng T, Chen B, Xiao J, et al. Improved soft fusion-based cooperative spectrum sensing defense against SSDF attacks [C]//2016 International Conference on Computer, Information and Telecommunication Systems. Kunming, China, 2016: 1-5.
[4] Shen J, Liu S, Zeng L, et al. Optimization of cooperative spectrum sensing in cognitive radio network[J]. IET Communications, 2009, 3(7): 1170. DOI:10.1049/iet-com.2008.0177.
[5] Zhang L, Ding G, Song F, et al. Defending against byzantine attack in cooperative spectrum sensing relying on a reliable reference [C]//2016 International Conference on Communications in China. Chengdu, China, 2016: 1-6.
[6] He X F, Dai H Y, Ning P. A Byzantine attack defender in cognitive radio networks: The conditional frequency check[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2512-2523. DOI:10.1109/twc.2013.031313.121551.
[7] Zeng F, Li J, Xu J, et al. A trust-based cooperative spectrum sensing scheme against SSDF attack in CRNs [C]//2016 IEEE Trustcom/BigDataSE/ISPA. Tianjin, China, 2016: 1167-1173.
[8] Hyder C S, Grebur B, Xiao L, et al. ARC: Adaptive reputation based clustering against spectrum sensing data falsification attacks[J]. IEEE Transactions on Mobile Computing, 2014, 13(8): 1707-1719. DOI:10.1109/tmc.2013.26.
[9] Farmani F, Abbasi-Jannatabad M, Berangi R. Detection of SSDF attack using SVDD algorithm in cognitive radio networks [C]//2011Third International Conference on Computational Intelligence, Communication Systems and Networks. Bali, Indonesia, 2011: 201-204.
[10] Pei Q Q, Yuan B B, Li L, et al.A sensing and etiquette reputation-based trust management for centralized cognitive radio networks[J].Neurocomputing, 2013, 101: 129-138. DOI:10.1016/j.neucom.2012.08.005.
[11] Chen H F, Zhou M, Xie L, et al. Joint spectrum sensing and resource allocation scheme in cognitive radio networks with spectrum sensing data falsification attack[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9181-9191. DOI:10.1109/tvt.2016.2520983.
[12] Jing Y F, Yu Q Z, Guang Y L. Securing cooperative spectrum sensing against rational SSDF attack in cognitive radio networks[J]. KSII Transactions on Internet and Information Systems, 2014, 8(1): 1-17. DOI:10.3837/tiis.2014.01.001.

Memo

Memo:
Biographies: Zhu Hancheng(1993—), male, graduate; Song Tiecheng(corresponding author), male, doctor, professor, songtc@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61771126, 61372104), the Science and Technology Project of State Grid Corporation of China(No.SGRIXTKJ[2015]349).
Citation: Zhu Hancheng, Song Tiecheng, Wu Jun, et al.Cooperative spectrum sensing algorithm based on bilateral threshold selection against Byzantine attack.[J].Journal of Southeast University(English Edition), 2018, 34(4):439-443.DOI:10.3969/j.issn.1003-7985.2018.04.004.
Last Update: 2018-12-20