|Table of Contents|

[1] Zhuang Huixuan, Sun Qinglin, Chen Zengqiang,. Variable structure control for descriptor Markovian jumpsystems subject to partially unknown transition probabilities [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 466-473. [doi:10.3969/j.issn.1003-7985.2018.04.008]
Copy

Variable structure control for descriptor Markovian jumpsystems subject to partially unknown transition probabilities()
具有部分未知转移概率的广义马尔可夫跳变系统的变结构控制
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
466-473
Research Field:
Automation
Publishing date:
2018-12-20

Info

Title:
Variable structure control for descriptor Markovian jumpsystems subject to partially unknown transition probabilities
具有部分未知转移概率的广义马尔可夫跳变系统的变结构控制
Author(s):
Zhuang Huixuan Sun Qinglin Chen Zengqiang
College of Artificial Intelligence, Nankai University, Tianjin 300350, China
Key Laboratory of Intelligent Robots, Nankai University, Tianjin 300350, China
庄会选 孙青林 陈增强
南开大学人工智能学院, 天津 300350; 南开大学智能机器人技术重点实验室, 天津 300350
Keywords:
descriptor Markovian jump systems(DMJSs) variable structure control(VSC) partially unknown transition probabilities(PUTPs) stochastic admissibility
广义马尔可夫跳变系统 变结构控制 部分未知转移概率 随机容许性
PACS:
TP273
DOI:
10.3969/j.issn.1003-7985.2018.04.008
Abstract:
The descriptor Markovian jump systems(DMJSs)with partially unknown transition probabilities(PUTPs)are studied by means of variable structure control. First, by virtue of the strictly linear matrix inequality(LMI)technique, a sufficient condition is presented, under which the DMJSs subject to PUTPs are stochastically admissible. Secondly, a novel sliding surface function based on the system state and input is constructed for DMJSs subject to PUTPs; and a dynamic sliding mode controller is synthesized, which guarantees that state trajectories will reach the pre-specified sliding surface in finite time despite uncertainties and disturbances. The results indicate that by checking the feasibility of a series of LMIs, the stochastic admissibility of the overall closed loop system is determined. Finally, the validity of the theoretical results is illustrated with the example of the direct-current motor. Furthermore, compared with the existing literature, the state convergence rate, buffeting reduction and overshoot reduction are obviously optimized.
研究了具有部分未知转移概率的广义马尔可夫跳变系统的变结构控制问题.首先, 利用严格线性矩阵不等式技术, 给出了服从部分未知转移概率的广义马尔可夫跳变系统随机容许的充分条件.其次, 针对具有部分未知转移概率的广义马尔可夫跳变系统, 构造了一种新的基于系统状态和输入的动态滑模面函数, 并建立了动态滑模控制器, 在不确定和扰动的情况下, 保证了状态轨迹在有限时间内到达指定的滑动面.通过检验一系列线性矩阵不等式的可行性, 可以确定整个闭环系统的随机可容许性.最后, 以直流电动机为例说明了理论结果的有效性.与已有相关文献相比, 状态收敛速度、削弱抖振和减小超调都有明显的优化.

References:

[1] Feng Z G, Lam J. Dissipative control and filtering of discrete-time singular systems[J]. International Journal of Systems Science, 2016, 47(11): 2532-2542. DOI:10.1080/00207721.2014.998751.
[2] Zhang Q L, Liu C, Zhang X. T-S fuzzy control for singular biological systems[M]//Complexity, Analysis and Control of Singular Biological Systems. London: Springer, 2012.
[3] Zhao Y, Jiang X S, Zhang W H. Stochastic HSymboleB@ control for discrete-time singular systems with state and disturbance dependent noise[J]. Discrete Dynamics in Nature and Society, 2017, 2017: 1-10. DOI:10.1155/2017/4173852.
[4] Zhang L X, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J]. IFAC Proceedings Volumes, 2008, 41(2): 15493-15498. DOI:10.3182/20080706-5-kr-1001.02620.
[5] Gao Q, Liu L, Feng G, et al. Universal fuzzy integral sliding-mode controllers based on T-S fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(2): 350-362. DOI:10.1109/tfuzz.2013.2254717.
[6] Li J H, Zhang Q L, Yan X G. Stabilization of descriptor Markovian jump systems with partially unknown transition probabilities[J]. International Journal of Systems Science, 2015, 46(2): 218-226. DOI:10.1080/00207721.2013.775394.
[7] Sheng L, Yang H Z. Stabilization control of a class of discrete-time Markov jump singular systems[J]. Control and Decision, 2010, 25(8): 1189-1194. DOI:10.13195/j.cd. 2010.08.72.shengl.017. (in Chinese)
[8] Chang H, Fang Y W, Lou S T, et al. Stabilization of a class of continuous-time singular Markov jump systems[J]. Control and Decision, 2012, 27(5):641-645, 651. DOI:10.13195/j.cd.2012.05.4.changh.021. (in Chinese)
[9] Utkin V I. Control under uncertainty conditions[M]//Sliding Modes in Control and Optimization. Berlin: Springer, 1992: 189-205. DOI:10.1007/978-3-642-84379-2_13.
[10] Li J H, Zhang Q L, Zhai D, et al. Sliding mode control for descriptor Markovian jump systems with mode-dependent derivative-term coefficient[J]. Nonlinear Dynamics, 2015, 82(1/2): 465-480. DOI:10.1007/s11071-015-2168-0.
[11] Lin J, Fei S, Shen J. Delay-dependent filtering for discrete-time singular Markovian jump systems with time-varying delay and partially unknown transition probabilities[J]. Signal Processing, 2011, 91(2):277-289.
[12] Edwards C, Spurgeon S. Sliding mode control: Theory and applications[M]. CRC Press, 1998.
[13] Zohrabi N, Zakeri H, Abolmasoumi A H, et al. An adaptive sliding mode approach for Markovian jump systems with uncertain mode-dependent time-varying delays and partly unknown transition probabilities[J]. International Journal of Dynamics and Control, 2018:1-17. DOI:10.1007/s40435-018-0430-2.
[14] Yang H, Wang Z D, Shu H S, et al. Almost sure HSymboleB@ sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays[J]. Neurocomputing, 2016, 175: 392-400. DOI:10.1016/j.neucom.2015.10.071.
[15] Khandani K, Majd V J, Tahmasebi M. Integral sliding mode control for robust stabilization of uncertain stochastic time-delay systems driven by fractional Brownian motion[J]. International Journal of Systems Science, 2017, 48(4): 828-837. DOI:10.1080/00207721.2016.1216201.
[16] Li H Y, Shi P, Yao D Y. Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults[J]. IEEE Transactions on Automatic Control, 2017, 62(4): 1933-1939. DOI:10.1109/tac.2016.2588885.
[17] Boulaabi I, Sellami A, Hmida F B. Robust delay-derivative-dependent sliding mode observer for fault reconstruction: A diesel engine system application[J]. Circuits, Systems, and Signal Processing, 2016, 35(7): 2351-2372. DOI:10.1007/s00034-015-0148-8.
[18] Xie J, Kao Y G, Park J H. HSymboleB@ performance for neutral-type Markovian switching systems with general uncertain transition rates via sliding mode control method[J]. Nonlinear Analysis: Hybrid Systems, 2018, 27: 416-436. DOI:10.1016/j.nahs.2017.10.002.
[19] Ma S P, Boukas E K. A singular system approach to robust sliding mode control for uncertain Markov jump systems[J]. Automatica, 2009, 45(11): 2707-2713. DOI:10.1016/j.automatica.2009.07.027.
[20] Yao D Y, Liu M, Lu R Q, et al. Adaptive sliding mode controller design of Markov jump systems with time-varying actuator faults and partly unknown transition probabilities[J]. Nonlinear Analysis: Hybrid Systems, 2018, 28: 105-122. DOI:10.1016/j.nahs.2017.07.007.
[21] Wang Y Y, Xia Y Q, Shen H, et al. SMC design for robust stabilization of nonlinear Markovian jump singular systems[J]. IEEE Transactions on Automatic Control, 2018, 63(1): 219-224. DOI:10.1109/tac.2017.2720970.
[22] Wu L G, Su X J, Shi P. Sliding mode control with bounded L2 gain performance of Markovian jump singular time-delay systems[J]. Automatica, 2012, 48(8): 1929-1933. DOI:10.1016/j.automatica.2012.05.064.
[23] Boukas E K. Control of singular systems with random abrupt changes[M]. Berlin, Heidelberg: Springer, 2008. DOI:10.1007/978-3-540-74345-3.
[24] Yaz E E. Linear matrix inequalities in system and control theory[J]. Proceedings of the IEEE, 1998, 86(12): 2473-2474. DOI:10.1109/jproc.1998.735454.

Memo

Memo:
Biographies: Zhuang Huixuan(1988—), male, Ph.D. candidate; Sun Qinglin(corresponding author), male, doctor, professor, sunql@nankai.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61573199).
Citation: Zhuang Huixuan, Sun Qinglin, Chen Zengqiang.Variable structure control for descriptor Markovian jump systems subject to partially unknown transition probabilities[J].Journal of Southeast University(English Edition), 2018, 34(4):466-473.DOI:10.3969/j.issn.1003-7985.2018.04.008.
Last Update: 2018-12-20