[1] Mao Y Y, You C S, Zhang J, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358. DOI:10.1109/comst.2017.2745201.
[2] Sharma K C, Bhakar R, and Tiwari H. Extreme Nash equilibrium of polymatrix games in electricity market[C]// International Conference on Recent Advances and Innovations in Engineering(ICRAIE-2014). Jaipur, India, 2014: 14631364-1-14631364-5.
[3] Yu R, Ding J F, Huang X M, et al. Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7844-7856. DOI:10.1109/tvt.2016.2536441.
[4] Meneguette R, Boukerche A. Peer-to-peer protocol for allocated resources in vehicular cloud based on V2V communication[C]//IEEE Wireless Communications and Networking Conference. San Francisco, CA, USA, 2017: 16868607-1-16868607-6.
[5] Zhang H, Tang X, Banez R, et al. An EPEC analysis for power allocation in LTE-V networks[C]//IEEE Global Communications Conference. Singapore, 2017: 17506109-1-17506109-6.
[6] Kumar N, Misra S, Rodrigues J J P C, et al. Coalition games for spatio-temporal big data in internet of vehicles environment: A comparative analysis[J]. IEEE Internet of Things Journal, 2015, 2(4): 310-320. DOI:10.1109/jiot.2015.2388588.
[7] Plachy J, Becvar Z, Strinati E. Dynamic resource allocation exploiting mobility prediction in mobile edge computing[C]//IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. Valencia, Spain, 2016: 16556137-1-16556137-6.
[8] Lin C C, Deng D J, Yao C C. Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[J]. IEEE Internet of Things Journal, 2018, 5(5): 3692-3700. DOI:10.1109/jiot.2017.2690961.
[9] Zhang J, Xia W W, Cheng Z X, et al. An evolutionary game for joint wireless and cloud resource allocation in mobile edge computing[C]//International Conference on Wireless Communications and Signal Processing. Nanjing, China, 2017: 17416811-1-17416811-6.
[10] Sharma K C, Bhakar R, Tiwari H. Extreme nash equilibrium of polymatrix games in electricity market[C]//International Conference on Recent Advances and Innovations in Engineering. Jaipur, India, 2014: 14631364-1-14631364-5.
[11] Sardellitti S, Scutari G, Barbarossa S. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(2): 89-103. DOI:10.1109/tsipn.2015.2448520.
[12] Sheng Z G, Mahapatra C, Leung V C M, et al. Energy efficient cooperative computing in mobile wireless sensor networks[J]. IEEE Transactions on Cloud Computing, 2018, 6(1): 114-126. DOI:10.1109/tcc.2015.2458272.
[13] Yu R, Ding J F, Huang X M, et al. Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7844-7856. DOI:10.1109/tvt.2016.2536441.
[14] Zhang H L, Guo F X, Ji H, et al. Combinational auction-based service provider selection in mobile edge computing networks[J]. IEEE Access, 2017, 5: 13455-13464. DOI:10.1109/access.2017.2721957.
[15] Jin A L, Song W, Zhuang W H. Auction-based resource allocation for sharing cloudlets in mobile cloud computing[J]. IEEE Transactions on Emerging Topics in Computing, 2018, 6(1): 45-57. DOI:10.1109/tetc.2015.2487865.
[16] Jin A L, Song W, Wang P, et al. Auction mechanisms toward efficient resource sharing for cloudlets in mobile cloud computing[J]. IEEE Transactions on Services Computing, 2016, 9(6): 895-909. DOI:10.1109/tsc.2015.2430315.
[17] Xu L, Wang J, Nallanathan A, et al. Resource allocation based on double auction for cloud computing system[C]//International Conference on High Performance Computing and Communications. Wuhan, China, 2016: 1538-1543.