[1] Schuller B, Vlasenko B, Eyben F, et al. Cross-corpus acoustic emotion recognition: Variances and strategies[J]. IEEE Transactions on Affective Computing, 2010, 1(2): 119-131. DOI:10.1109/t-affc.2010.8.
[2] Lim H, Kim M J, Kim H. Cross-acoustic transfer learning for sound event classification[C]// IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Shanghai, China, 2016: 16021470.
[3] Torrey L, Shavlik J. Transfer learning[M]//Handbook of Research on Machine Learning Applications and Trends:Algorithms, Methods, and Techniques. IGI Global, 2010:242-264. DOI:10.4018/978-1-60566-766-9.ch011.
[4] Deng J, Zhang Z X, Marchi E, et al. Sparse autoencoder-based feature transfer learning for speech emotion recognition[C]// 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Geneva, Switzerland, 2013: 511-516.
[5] Latif S, Rana R, Younis S, et al. Cross corpus speech emotion classification—An effective transfer learning technique[EB/OL].(2018-01-22)[2018-11-20]. https://www.researchgate.net/publication/322634480_Cross_Corpus_Speech_Emotion_Classification_-_An_Effective_Transfer_Learning_Technique.
[6] Zong Y, Zheng W M, Zhang T, et al. Cross-corpus speech emotion recognition based on domain-adaptive least-squares regression[J]. IEEE Signal Processing Letters, 2016, 23(5): 585-589. DOI:10.1109/lsp.2016.2537926.
[7] Song P, Zheng W M. Feature selection based transfer subspace learning for speech emotion recognition[J]. IEEE Transactions on Affective Computing, 2018: 1. DOI:10.1109/taffc.2018.2800046.
[8] Xu J, Xiang L, Liu Q S, et al. Stacked sparse autoencoder(SSAE)for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130. DOI:10.1109/tmi.2015.2458702.
[9] Sarath C A P, Lauly S, Larochelle H, et al. An autoencoder approach to learning bilingual word representations[C]//International Conference on Neural Information Processing Systems. Kuching, Malaysia, 2014: 1853-1861.
[10] Goodfellow I J, Le Q V, Saxe A M, et al. Measuring invariances in deep networks[C]// International Conference on Neural Information Processing Systems. Bangkok, Thailand, 2009: 646-654.
[11] Mairal J, Bach F, Ponce J. Online learning for matrix factorization and sparse coding[J]. Journal of Machine Learning Research, 2009, 11(1): 19-60.
[12] HintonG E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. DOI:10.1126/science.1127647.
[13] Pan S F, Tao J H, Li Y. The CASIA audio emotion recognition method for audio/visual emotion challenge 2011[C]// Proceedings of the Fourth International Conference on Affective Computing and Intelligent Interaction. Memphis, TN, USA, 2011:388-395.
[14] Eyben F, Wöllmer M, Schuller B. openSMILE—The Munich versatile and fast open-source audio feature extractor[C]//ACM International Conference on Multimedia. Firenze, Italia, 2010: 1459-1462.
[15] Larochelle H, Bengio Y, Louradour J, et al. Exploring Strategies for training deep neural networks[J]. Journal of Machine Learning Research, 2009, 1(10): 1-40.
[16] Bengio Y, Lamblin P, Dan P, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007, 19(2007): 153-160.
[17] Hinton G E. Deep belief networks[J]. Scholarpedia, 2009, 4(5): 5947.DOI:10.4249/scholarpedia.5947.
[18] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL].(2015-11-27)[2018-11-20]. http://de.arxiv.org/pdf/1505.00853.