[1] Molina A, Eddings E G, Pershing D W, et al. Char nitrogen conversion: Implications to emissions from coal-fired utility boilers[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 507-531. DOI:10.1016/s0360-1285(00)00010-1.
[2] Beloševi S V, Tomanovi I, Crnomarkovic N, et al. Modling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers [J]. Thermal Science, 2016, 20(suppl.1): 183-196. DOI:10.2298/tsci150604223b.
[3] Luo Z X, Wang F, Zhou H C, et al. Principles of optimization of combustion by radiant energy signal and its application in a 660 MWe down- and coal-fired boiler[J]. Korean Journal of Chemical Engineering, 2011, 28(12): 2336-2343. DOI:10.1007/s11814-011-0098-1.
[4] Wei Z B, Li X L, Xu L J, et al. Comparative study of computational intelligence approaches for NOxx reduction of coal-fired boiler[J]. Energy, 2013, 55: 683-692. DOI:10.1016/j.energy.2013.04.007.
[5] Tan P, Zhang C, Xia J, et al. NOxx emission model for coal-fired boilers using principle component analysis and support vector regression [J]. Journal of Chemical Engineering of Japan, 2016, 49(2):211-216. DOI:10.1252/jcej.15we066.
[6] Wang L P. Support vector machines: Theory and applications [M] //Studies in Fuzziness and Soft Computing. New York: Springer-Verlag, 2005.
[7] Ilamathi P, Selladurai V, Balamurugan K, et al. ANN-GA approach for predictive modeling and optimization of NOxx emission in a tangentially fired boiler[J]. Clean Technologies and Environmental Policy, 2013, 15(1): 125-131. DOI:10.1007/s10098-012-0490-5.
[8] Lopes C, Perdigão F. Event detection by HMM, SVM and ANN: A comparative study[C]// Lecture Notes in Computer Science. Berlin, Heidelberg: Springer-Verlag, 2008. DOI:10.1007/978-3-540-85980-2_1.
[9] Li G Q, Niu P F, Duan X L, et al. Fast learning network: A novel artificial neural network with a fast learning speed[J]. Neural Computing and Applications, 2014, 24(7/8): 1683-1695. DOI:10.1007/s00521-013-1398-7.
[10] Singh K P, Ojha P, Malik A, et al. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 99(2): 150-160. DOI:10.1016/j.chemolab.2009.09.004.
[11] Ronen D, Sanders C F W, Tan H S, et al. Predictive dynamic modeling of key process variables in granulation processes using partial least squares approach[J]. Industrial & Engineering Chemistry Research, 2011, 50(3): 1419-1426. DOI:10.1021/ie100836w.
[12] Huang Z Y, Yu Y L, Gu J, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 920-933. DOI:10.1109/tcyb.2016.2533424.
[13] Baffi G, Martin E B, Morris A J. Non-linear projection to latent structures revisited(the neural network PLS algorithm)[J]. Computers & Chemical Engineering, 1999, 23(9): 1293-1307. DOI:10.1016/s0098-1354(99)00291-4.
[14] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. DOI:10.1016/j.neucom.2005.12.126.
[15] Smrekar J, Potoˇ/cnik P, Senegaˇ/cnik A. Multi-step-ahead prediction of NOx emissions for a coal-based boiler[J]. Applied Energy, 2013, 106: 89-99. DOI:10.1016/j.apenergy.2012.10.056.