[1] Graziani G, Makhlouf A, Menini C, et al. BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras[J]. Symmetry, Integrability and Geometry: Methods and Applications, 2015, 11:086-1-086-34. DOI:10.3842/sigma.2015.086.
[2] Makhlouf A, Silvestrov S D. Hom-algebra structures[J]. Journal of Generalized Lie Theory and Applications, 2008, 2(2): 51-64. DOI:10.4303/jglta/s070206.
[3] Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras[J]. Journal of Algebra and Its Applications, 2010, 9(4): 553-589. DOI:10.1142/s0219498810004117.
[4] Yau D. Hom-algebras and homology[J]. Journal of Lie Theory, 2009, 19(2): 409-421.
[5] Bakalov B, D’Andrea A, Kac V G. Theory of finite pseudoalgebras[J]. Advances in Mathematics, 2001, 162(1): 1-140. DOI:10.1006/aima.2001.1993.
[6] Kac V. Vertex algebras for beginners[M]. Providence, Rhode Island: American Mathematical Society, 1998. DOI:10.1090/ulect/010.
[7] Dorfman I. Dirac structures and integrability of nonlinear evolution equations [M]. New York: John Wiley & Sons, 1993.
[8] Gel’Fand I M, Dorfman I Y. Hamiltonian operators and infinite-dimensional Lie algebras[J]. Functional Analysis and Its Applications, 1982, 15(3):173-187. DOI:10.1007/bf01089922.
[9] Xu X P. Equivalence of conformal superalgebras to Hamiltonian superoperators[J]. Algebra Colloquium, 2001, 8(1): 63-92.
[10] Sun Q X. Generalization of H-pseudoalgebraic structures[J]. Journal of Mathematical Physics, 2012, 53(1): 012105. DOI:10.1063/1.3665708.
[11] Wu Z X. Leibniz H-pseudoalgebras[J]. Journal of Algebra, 2015, 437: 1-33. DOI:10.1016/j.jalgebra.2015.04.019.