|Table of Contents|

[1] Li Lie, Sun Beibei, Hua Haitao,. Analysis of radial stiffness of rubber bushused in dynamic vibration absorber [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 281-287. [doi:10.3969/j.issn.1003-7985.2019.03.002]
Copy

Analysis of radial stiffness of rubber bushused in dynamic vibration absorber()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
281-287
Research Field:
Materials Sciences and Engineering
Publishing date:
2019-09-30

Info

Title:
Analysis of radial stiffness of rubber bushused in dynamic vibration absorber
Author(s):
Li Lie Sun Beibei Hua Haitao
School of Mechanical Engineering, Southeast University, Nanjing 210096, China
Keywords:
radial stiffness rubber bush dynamic vibration absorber boring bar
PACS:
TG713
DOI:
10.3969/j.issn.1003-7985.2019.03.002
Abstract:
In order to study the influence of the structural parameters of the rubber bush on its radial stiffness, the constitutive relation of rubber materiel is used to obtain the calculation formula of the dimensionless radial stiffness coefficient. The obtained theoretical result is consistent with previous research results in both long rubber bushes and short rubber bushes. The simulation case was conducted by the finite element method to verify the correctness of the theory. The axial compression experiment was conducted to obtain the parameters needed in the simulation. The result shows that the percentage difference between the theoretical result and the simulation one is only 2.75%. A series of simulations were conducted to compare with previous work, and the largest magnitude of the percentage difference is only about 5%. Finally, the radial stiffness experiment was conducted by using a dynamic vibration absorber, and the influence of the structural parameters of the rubber bush on its radial stiffness is obtained. The result shows that the radial stiffness of the rubber bush increases with the increase in the length and the inner radius, but decreases with the increase in the outer radius.

References:

[1] Kaya N. Shape optimization of rubber bushing using differential evolution algorithm[J]. The Scientific World Journal, 2014, 2014: 1-9. DOI:10.1155/2014/379196.
[2] Li L, Sun B B, He M, et al. Analysis of the radial stiffness of rubber bush used in dynamic vibration absorber based on artificial neural network[J]. NeuroQuantology, 2018, 16(6): 737-744. DOI:10.14704/nq.2018.16.6.1643.
[3] Liu X L, Liu Q, Wu S, et al. Research on the performance of damping boring bar with a variable stiffness dynamic vibration absorber[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/10/11/12): 2893-2906. DOI:10.1007/s00170-016-9612-2.
[4] Liu X L, Liu Q, Wu S, et al. Analysis of the vibration characteristics and adjustment method of boring bar with a variable stiffness vibration absorber[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1/2/3/4): 95-105. DOI:10.1007/s00170-017-0453-4.
[5] Siddhpura M, Paurobally R. A review of chatter vibration research in turning[J]. International Journal of Machine Tools and Manufacture, 2012, 61: 27-47. DOI:10.1016/j.ijmachtools.2012.05.007.
[6] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate Polymers, 2016, 137: 174-183. DOI:10.1016/j.carbpol.2015.10.027.
[7] Maureira N, de la Llera J, Oyarzo C, et al. A nonlinear model for multilayered rubber isolators based on a co-rotational formulation[J]. Engineering Structures, 2017, 131: 1-13. DOI:10.1016/j.engstruct.2016.09.055.
[8] Markou A A, Manolis G D. Numerical solutions for nonlinear high damping rubber bearing isolators: Newmark’s method with Netwon-Raphson iteration revisited[J]. Journal of Theoretical and Applied Mechanics, 2018, 48(1): 46-58. DOI:10.2478/jtam-2018-0004.
[9] Stevenson A C. LXXXVII. Some boundary problems of two-dimensional elasticity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1943, 34(238): 766-793. DOI:10.1080/14786444308521444.
[10] Adkins J E, Gent A N. Load-deflexion relations of rubber bush mountings[J]. British Journal of Applied Physics, 1954, 5(10): 354-358. DOI:10.1088/0508-3443/5/10/305.
[11] Horton J M, Gover M J C, Tupholme G E. Stiffness of rubber bush mountings subjected to radial loading[J]. Rubber Chemistry and Technology, 2000, 73(2): 253-264. DOI:10.5254/1.3547589.
[12] Horton J M, Tupholme G E. Approximate radial stiffness of rubber bush mountings[J]. Materials & Design, 2006, 27(3): 226-229. DOI:10.1016/j.matdes.2004.10.012.
[13] Hill J M. Radical deflections of rubber bush mountings of finite lengths[J]. International Journal of Engineering Science, 1975, 13(4): 407-422. DOI:10.1016/0020-7225(75)90068-3.
[14] Qin B, Shao J P, Han G H, et al. Finite element analyses on radial stiffness of annular rubber in the dynamical vibration absorption boring bar[J]. Machine Design & Research, 2008, 24(4): 90-92, 97. DOI:10.13952/j.cnki.jofmdr.2008.04.004. (in Chinese)
[15] Li L, Sun B B. Optimal parameters selection and engineering implementation of dynamic vibration absorber attached to boring bar[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Hamburg, Germany, 2016, 253(8): 563-570.

Memo

Memo:
Biographies: Li Lie(1990—), male, Ph.D.candidate;Sun Beibei(corresponding author), female, doctor, professor, bbsun@seu.edu.cn.
Foundation items: The Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX16-0186), the National Science and Technology Major Project(No.2013ZX04012032).
Citation: Li Lie, Sun Beibei, Hua Haitao.Analysis of radial stiffness of rubber bush used in dynamic vibration absorber[J].Journal of Southeast University(English Edition), 2019, 35(3):281-287.DOI:10.3969/j.issn.1003-7985.2019.03.002.
Last Update: 2019-09-20