[1] Kaya N. Shape optimization of rubber bushing using differential evolution algorithm[J]. The Scientific World Journal, 2014, 2014: 1-9. DOI:10.1155/2014/379196.
[2] Li L, Sun B B, He M, et al. Analysis of the radial stiffness of rubber bush used in dynamic vibration absorber based on artificial neural network[J]. NeuroQuantology, 2018, 16(6): 737-744. DOI:10.14704/nq.2018.16.6.1643.
[3] Liu X L, Liu Q, Wu S, et al. Research on the performance of damping boring bar with a variable stiffness dynamic vibration absorber[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/10/11/12): 2893-2906. DOI:10.1007/s00170-016-9612-2.
[4] Liu X L, Liu Q, Wu S, et al. Analysis of the vibration characteristics and adjustment method of boring bar with a variable stiffness vibration absorber[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1/2/3/4): 95-105. DOI:10.1007/s00170-017-0453-4.
[5] Siddhpura M, Paurobally R. A review of chatter vibration research in turning[J]. International Journal of Machine Tools and Manufacture, 2012, 61: 27-47. DOI:10.1016/j.ijmachtools.2012.05.007.
[6] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate Polymers, 2016, 137: 174-183. DOI:10.1016/j.carbpol.2015.10.027.
[7] Maureira N, de la Llera J, Oyarzo C, et al. A nonlinear model for multilayered rubber isolators based on a co-rotational formulation[J]. Engineering Structures, 2017, 131: 1-13. DOI:10.1016/j.engstruct.2016.09.055.
[8] Markou A A, Manolis G D. Numerical solutions for nonlinear high damping rubber bearing isolators: Newmark’s method with Netwon-Raphson iteration revisited[J]. Journal of Theoretical and Applied Mechanics, 2018, 48(1): 46-58. DOI:10.2478/jtam-2018-0004.
[9] Stevenson A C. LXXXVII. Some boundary problems of two-dimensional elasticity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1943, 34(238): 766-793. DOI:10.1080/14786444308521444.
[10] Adkins J E, Gent A N. Load-deflexion relations of rubber bush mountings[J]. British Journal of Applied Physics, 1954, 5(10): 354-358. DOI:10.1088/0508-3443/5/10/305.
[11] Horton J M, Gover M J C, Tupholme G E. Stiffness of rubber bush mountings subjected to radial loading[J]. Rubber Chemistry and Technology, 2000, 73(2): 253-264. DOI:10.5254/1.3547589.
[12] Horton J M, Tupholme G E. Approximate radial stiffness of rubber bush mountings[J]. Materials & Design, 2006, 27(3): 226-229. DOI:10.1016/j.matdes.2004.10.012.
[13] Hill J M. Radical deflections of rubber bush mountings of finite lengths[J]. International Journal of Engineering Science, 1975, 13(4): 407-422. DOI:10.1016/0020-7225(75)90068-3.
[14] Qin B, Shao J P, Han G H, et al. Finite element analyses on radial stiffness of annular rubber in the dynamical vibration absorption boring bar[J]. Machine Design & Research, 2008, 24(4): 90-92, 97. DOI:10.13952/j.cnki.jofmdr.2008.04.004. (in Chinese)
[15] Li L, Sun B B. Optimal parameters selection and engineering implementation of dynamic vibration absorber attached to boring bar[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Hamburg, Germany, 2016, 253(8): 563-570.