|Table of Contents|

[1] Zhang Hui, Dai Min, Zhang Zhisheng, Xia Zhijie, et al. Analytical models for circular and spherical dielectric elastomers [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 288-291. [doi:10.3969/j.issn.1003-7985.2019.03.003]
Copy

Analytical models for circular and spherical dielectric elastomers()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
288-291
Research Field:
Mechanical Engineering
Publishing date:
2019-09-30

Info

Title:
Analytical models for circular and spherical dielectric elastomers
Author(s):
Zhang Hui Dai Min Zhang Zhisheng Xia Zhijie
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Keywords:
dielectric elastomer circular frame balloon actuator large deformation phase transition
PACS:
TH134
DOI:
10.3969/j.issn.1003-7985.2019.03.003
Abstract:
In order to imitate skin characteristics, a dielectric elastomer(DE)membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air vehicles and other equipment, lightweight gas is pumped into a DE spherical shell to generate controllable flight movements. According to experimental phenomena and data, the calculation models of phase transitions on circular DE films are built. Meanwhile, the deformation characteristics of different DE(acrylic polymer and rubber)spherical actuators combined with helium are compared. The peak pressure inside a rubber balloon is greater than that of a VHB(acrylic polymer)balloon shell, but the limit stretch of rubber is much smaller. By taking advantages of this phenomenon, large deformations of a VHB spherical shell can be realized at an actuated state. Moreover, multi-layer spherical DE shells can achieve larger voltage-induced volume change than monolayer ones. The research indicates that pre-stretching is one of the key factors to induce phase transitions between flat, wrinkled and bulging regions on circular DE films, and the internal pressure determines the electromechanical performance of balloon actuators.

References:

[1] Zhang H, Zhang Z S. Phase transitions of dielectric elastomers in a circular frame [J]. Journal of Southeast University(English Edition), 2017, 33(4): 387-390. DOI: 10.3969/ j.issn.1003-7985.2017.04.001.
[2] Wu J F, Li J Q, Song A G, et al. Electrostrictive properties on polyurethane elastomers [J]. Journal of Southeast University(Natural Science Edition), 2008, 38(3):439-443. DOI:10.3321/j.issn:1001-0505.2008.03. 015. (in Chinese)
[3] Roche E T, Wohlfarth R, Overvelde J T B, et al. A bioinspired soft actuated material [J]. Advanced Materials, 2014, 26(8): 1200-1206. DOI:10.1002/adma.201304018.
[4] Zhang H, Zhou Y F, Dai M, et al. A novel flying robot system driven by dielectric elastomer balloon actuators [J]. Journal of Intelligent Material Systems and Structures, 2018, 29(11):2522-2527.DOI:10.1177/1045389x18770879.
[5] Mao G Y, Huang X Q, Diab M, et al. Controlling wrinkles on the surface of a dielectric elastomer balloon [J]. Extreme Mechanics Letters, 2016, 9: 139-146. DOI:10.1016/j.eml.2016.06.001.
[6] Yu J, Chary S, Das S, et al. Gecko-inspired dry adhesive for robotic applications [J]. Advanced Functional Materials, 2011, 21(16): 3010-3018. DOI:10.1002/adfm. 201100493.
[7] Huang R, Suo Z G. Electromechanical phase transition in dielectric elastomers [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2140):1014-1040. DOI:10.1098/rspa.2011.0452.
[8] Lu T Q, Suo Z G. Large conversion of energy in dielectric elastomers by electromechanical phase transition [J]. Acta Mechanica Sinica, 2012, 28(4): 1106-1114. DOI:10.1007/s10409-012-0091-x.
[9] Godaba H, Zhang Z Q, Gupta U, et al. Dynamic pattern of wrinkles in a dielectric elastomer [J]. Soft Matter, 2017, 13(16): 2942-2951. DOI:10.1039/c7sm00198c.
[10] Zhu J, Cai S Q, Suo Z G. Nonlinear oscillation of a dielectric elastomer balloon [J]. Polymer International, 2010, 59(3): 378-383. DOI:10.1002/pi.2767.
[11] Chen F F, Wang M Y. Dynamic performance of a dielectric elastomer balloon actuator [J]. Meccanica, 2015, 50(11):2731-2739.DOI:10.1007/s11012-015-0206-0.
[12] Zhang H, Wang Y X, Zhu J, et al. Balloon actuators based on the dielectric elastomer [C]//IEEE International Conference on Industrial Technology. Toronto, Canada, 2017: 654-658. DOI:10.1109/icit. 2017.7915436.
[13] Koh S J A, Keplinger C, Li T F, et al. Dielectric elastomer generators: How much energy can be converted? [J]. ASME Transactions on Mechatronics, 2011, 16(1): 33-41. DOI:10.1109/tmech.2010.2089635.
[14] Zhang H, Wang Y X, Godaba H, et al. Harnessing dielectric breakdown of dielectric elastomer to achieve large actuation [J]. Journal of Applied Mechanics, 2017, 84(12): 121011. DOI:10.1115/1.4038174.

Memo

Memo:
Biographies: Zhang Hui(1987—), female, doctor, assistant researcher; Zhang Zhisheng(corresponding author), male, doctor, professor, oldbc@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51775108).
Citation: Zhang Hui, Dai Min, Zhang Zhisheng, et al.Analytical models for circular and spherical dielectric elastomers[J].Journal of Southeast University(English Edition), 2019, 35(3):288-291.DOI:10.3969/j.issn.1003-7985.2019.03.003.
Last Update: 2019-09-20