[1] Hossain M, Abu-Siada A, Muyeen S. Methods for advanced wind turbine condition monitoring and early diagnosis: A literature review[J].Energies, 2018, 11(5): 1309. DOI:10.3390/en11051309.
[2] Yang W, Tavner P J, Crabtree C J, et al. Cost-effective condition monitoring for wind turbines[J].IEEE Transactions on Industrial Electronics, 2010, 57(1): 263-271. DOI:10.1109/tie.2009.2032202.
[3] Kay S M, Marple S L. Spectrum analysis: A modern perspective[J].Proceedings of the IEEE, 1981, 69(11): 1380-1419. DOI:10.1109/proc.1981.12184.
[4] Boashash B. Time-frequency signal analysis and processing: A comprehensive reference [M]. Oxford: Elsevier Science, 2016:8-9.
[5] Chen Y, Zhou C, Yuan J, et al. Application of empirical mode decomposition in random noise attenuation of seismic data [J]. Journal of Seismic Exploration, 2014, 23: 481-495.
[6] Jia F, Lei Y G, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 303-315. DOI:10.1016/j.ymssp.2015.10.025.
[7] Bishop C. Pattern recognition and machine learning[M]. New York: Springer-Verlag, 2006:559-561.
[8] Cao W H, Xu J P, Liu Z T. Speaker-independent speech emotion recognition based on random forest feature selection algorithm[C]// Proceedings of the 36th Chinese Control Conference(CCC). Dalian, China, 2017. DOI:10.23919/chicc.2017.8029112.
[9] Kursa M B, Rudnicki W R. Feature selection with the BorutaPackage[J].Journal of Statistical Software, 2010, 36(11):1-13. DOI:10.18637/jss.v036.i11.
[10] Liou C Y, Cheng W C, Liou J W, et al. Autoencoder for words[J].Neurocomputing, 2014, 139: 84-96. DOI:10.1016/j.neucom.2013.09.055.
[11] Zhao X P, Wu J X, Zhang Y H, et al. Fault diagnosis of motor in frequency domain signal by stacked de-noising auto-encoder[J].Computers, Materials & Continua, 2018, 57(2): 223-242. DOI:10.32604/cmc.2018.02490.
[12] Zhang X Y, Liang Y T, Zhou J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J].Measurement, 2015, 69: 164-179. DOI:10.1016/j.measurement.2015.03.017.
[13] Karperien A. Defining microglial morphology: Form, function, and fractal dimension[M]. Queensland, Australia: Charles Sturt University, 2004:99-102.
[14] Forouzannezhad P, Abbaspour A, Cabrerizo M, et al. Early diagnosis of mild cognitive impairment using random forest feature selection[C]//2018 IEEE Biomedical Circuits and Systems Conference(BioCAS). Cleveland, OH, USA: IEEE, 2018. DOI:10.1109/biocas.2018.8584773.
[15] Li B Q, Cai Y D, Feng K Y, et al. Prediction of protein cleavage site with feature selection by random forest[J].PLoS One, 2012, 7(9): e45854. DOI:10.1371/journal.pone.0045854.
[16] Chen Z Y, Li W H. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. DOI:10.1109/tim.2017.2669947.
[17] Zheng J D, Cheng J S, Yang Y. Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J].Mechanical Systems and Signal Processing, 2013, 40(1): 136-153. DOI:10.1016/j.ymssp.2013.04.005.