|Table of Contents|

[1] Dai Xianze, Shuai Liguo, Liu Jie,. Rolling contact fatigue nondestructive testing systemfor a bearing inner ring based on initial permeability [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 310-317. [doi:10.3969/j.issn.1003-7985.2019.03.006]
Copy

Rolling contact fatigue nondestructive testing systemfor a bearing inner ring based on initial permeability()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
310-317
Research Field:
Materials Sciences and Engineering
Publishing date:
2019-09-30

Info

Title:
Rolling contact fatigue nondestructive testing systemfor a bearing inner ring based on initial permeability
Author(s):
Dai Xianze Shuai Liguo Liu Jie
College of Mechanical Engineering, Southeast University, Nanjing 211189, China
Keywords:
initial permeability nondestructive testing rolling contact fatigue.
PACS:
TB303
DOI:
10.3969/j.issn.1003-7985.2019.03.006
Abstract:
Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is proposed. By analyzing the crack propagation mechanism, a fatigue state detection system based on differential signals is designed. A simulation model of the detection of the inner ring of the pulse signal is established by using the electromagnetic field simulation software. The effects of the height of the coil, the inner and outer diameter, the number of coil turns, the diameter and the height of the ferrite core of the probe on the differential value of the detection signal are simulated. The parameter combination of the maximum difference value of the signal is used as the structural size of the sensor, and the detection sensor is designed and fabricated. Moreover, the bearing fatigue test system is designed, and the bearing is tested. The results show that the system has good detection ability for rolling contact fatigue and verifies the mechanism and trend of crack propagation in the inner ring of the bearing.

References:

[1] Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J].Mechanical Systems and Signal Processing, 2015, 64/65: 100-131. DOI:10.1016/j.ymssp.2015.04.021.
[2] Qiu H, Lee J, Lin J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]. Advanced Engineering Informatics, 2003, 17(3/4): 127-140. DOI:10.1016/j.aei.2004.08.001.
[3] Ishida M. Rolling contact fatigue(RCF)defect of rails in Japanese railways and its mitigation strategies[J]. Electronic Journal of Structural Engineering, 2013, 13: 67-74.
[4] Fr�F8;lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. DOI:10.1016/0043-1354(95)00323-1.
[5] Evans M H. An updated review:White etching cracks(WECs)and axial cracks in wind turbine gearbox bearings[J]. Materials Science and Technology, 2016, 32(11): 1133-1169. DOI:10.1080/02670836.2015.1133022.
[6] Harris T A, Yu W K. Lundberg-Palmgren fatigue theory: Considerations of failure stress and stressed volume[J]. Journal of Tribology, 1999, 121(1): 85-89. DOI:10.1115/1.2833815.
[7] Organización Internacional de Normalización. ISO 281:2007 Rolling bearings: Dynamic load ratings and rating life[S]. German Institute for Standardization(DIN), 2010-10-01.
[8] Ioannides E, Harris T A. A new fatigue life model for rolling bearings[J]. Journal of Tribology, 1985, 107(3): 367-377.DOI:10.1115/1.3261081.
[9] Li R X, Zhou J Y, Sun K Z, et al. Reliability analysis for rolling bearing systems under random load[J]. Machine Tool & Hydraulics, 2012, 40(1): 157-160.(in Chinese)
[10] Houpert L, Chevalier F. Rolling bearing stress based life: Part I: Calculation model[J]. Journal of Tribology, 2012, 134(2): 021103. DOI:10.1115/1.4006135.
[11] Zhang Y J, Wang J G. Evaluation on comparison model of fatigue life theoretical models for rolling bearing[J]. Bearing, 2012(6): 33-36. DOI:10.19533/j.issn1000-3762.2012.06.012. (in Chinese)
[12] Huang Y, Li S X, Lin S E, et al. Using the method of infrared sensing for monitoring fatigue process of metals[J].Materials Evaluation, 1984, 42(8):1020-1024.
[13] Jiang L, Wang H, Liaw P K, et al. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling[J]. Metallurgical and Materials Transactions A, 2001, 32(9): 2279-2296. DOI:10.1007/s11661-001-0203-x.
[14] Amiri M, Khonsari M M. Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load[J]. International Journal of Fatigue, 2010, 32(2): 382-389. DOI:10.1016/j.ijfatigue.2009.07.015.
[15] Amiri M, Khonsari M M. Life prediction of metals undergoing fatigue load based on temperature evolution[J]. Materials Science and Engineering: A, 2010, 527(6): 1555-1559. DOI:10.1016/j.msea.2009.10.025.
[16] Steenbergen M. Rolling contact fatigue in relation to rail grinding[J]. Wear, 2016, 356/357: 110-121. DOI:10.1016/j.wear.2016.03.015.
[17] Harrison D J, Jones L D, Burke S K. Benchmark problems for defect size and shape determination in eddy-current nondestructive evaluation[J]. Journal of Nondestructive evaluation, 1996, 15(1): 21-34. DOI:10.1007/bf00733823.
[18] García-Martín J, Gómez-Gil J, Vázquez-Sánchez E. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3): 2525-2565. DOI:10.3390/s110302525.
[19] Bakunov A S, Muzhitskii V F, Shubochkin S E. A modern solution to problems of eddy-current structuroscopy[J]. Russian Journal of Nondestructive Testing, 2004, 40(5): 346-349. DOI:10.1023/b:runt.0000045939.27103.30.
[20] Canadinc D, Sehitoglu H, Verzal K. Analysis of surface crack growth under rolling contact fatigue[J]. International Journal of Fatigue, 2008, 30(9): 1678-1689. DOI:10.1016/j.ijfatigue.2007.11.002.
[21] Wang D, Dong S Y, Xu B S, et al. Study on metal magnetic memory testing of stress concentration position[J]. Failure Analysis and Prevention, 2007, 2(2): 12-15. DOI:10.1016/j.ndteint.2010.05.007. (in Chinese)
[22] Shu L, Songling H, Wei Z, et al. Improved immunity to lift-off effect in pulsed eddy current testing with two-stage differential probes[J]. Russian Journal of Nondestructive Testing, 2008, 44(2): 138-144. DOI:10.1134/s1061830908020095.

Memo

Memo:
Biographies: Dai Xianze(1997—), male, graduate; Shuai Liguo(corresponding author), male, doctor, professor, 101008891@seu.edu.cn.
Foundation item: The Science and Technology Innovation Committee(STIC)of Shenzhen(No.JCYJ20180306174455080).
Citation: Dai Xianze, Shuai Liguo, Liu Jie.Rolling contact fatiguenondestructive testing system for a bearing inner ring based on initial permeability[J].Journal of Southeast University(English Edition), 2019, 35(3):310-317.DOI:10.3969/j.issn.1003-7985.2019.03.006.
Last Update: 2019-09-20