|Table of Contents|

[1] Xu Chengwei, Yu Yan, Xie Wenxia, et al. Experimental investigation of oil particles filtrationon carbon nanotubes composite filter [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 351-358. [doi:10.3969/j.issn.1003-7985.2019.03.011]
Copy

Experimental investigation of oil particles filtrationon carbon nanotubes composite filter()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
351-358
Research Field:
Environmental Science and Engineering
Publishing date:
2019-09-30

Info

Title:
Experimental investigation of oil particles filtrationon carbon nanotubes composite filter
Author(s):
Xu Chengwei1 2 Yu Yan3 Xie Wenxia1 Zhang Jun1 Yang Jiangang1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
3College of Engineering, Hebei Normal University, Shijiazhuang 050024, China
Keywords:
carbon nanotubes composite filter oil particle filtration efficiency pressure drop
PACS:
X513
DOI:
10.3969/j.issn.1003-7985.2019.03.011
Abstract:
Due to the lipophilicity of carbon nanotubes(CNTs), the carbon nanotubes composite filter for removing oil particles in cooking fumes is synthesized. The composite filter was fabricated by the chemical vapor deposition(CVD)method. The filtration characteristics of the resultant filter and the influence of the parameters were investigated. The results show that the filtration efficiency of the CNT filter during the saturation period is 99.92%, which satisfies the high efficiency particulate air(HEPA)standard. Pressure drop increases linearly before saturation and the pressure drop at the saturation stage is only two times that of the initial stage, which is far less than that of conventional glass fiber filters. The efficiency increases by enhancing filtration velocity. Pressure drops in the composite filter at the equilibrium stage are equal under different aerosol concentrations. The increase in concentration can improve the efficiency of composite filters. Therefore, the CNT filter is suitable for decreasing oil particle pollution due to its lower increase ratio of pressure drop and higher efficiency.

References:

[1] See S W, Balasubramanian R. Risk assessment of exposure to indoor aerosols associated with Chinese cooking[J]. Environmental Research, 2006, 102(2): 197-204. DOI:10.1016/j.envres.2005.12.013.
[2] Li Y C, Shu M, Ho S S H, et al. Characteristics of PM2.5 emitted from different cooking activities in China[J]. Atmospheric Research, 2015, 166: 83-91. DOI:10.1016/j.atmosres.2015.06.010.
[3] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment, 2004, 38(38): 6557-6564. DOI:10.1016/j.atmosenv.2004.08.034.
[4] Zhao X Y, Hu Q H, Wang X M, et al. Composition profiles of organic aerosols from Chinese residential cooking: Case study in urban Guangzhou, South China[J]. Journal of Atmospheric Chemistry, 2015, 72(1): 1-18. DOI:10.1007/s10874-015-9298-0.
[5] Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60(10): 2751-2762. DOI:10.1016/j.ces.2004.12.026.
[6] Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions[J]. Journal of Aerosol Science, 2004, 35(2): 263-278. DOI:10.1016/j.jaerosci.2003.07.003.
[7] Bredin A, Mullins B J. Influence of flow-interruption on filter performance during the filtration of liquid aerosols by fibrous filters[J]. Separation and Purification Technology, 2012, 90: 53-63. DOI:10.1016/j.seppur.2012.02.009.
[8] Manzo G M, Wu Y R, Chase G G, et al. Comparison of nonwoven glass and stainless steel microfiber media in aerosol coalescence filtration[J]. Separation and Purification Technology, 2016, 162: 14-19. DOI:10.1016/j.seppur.2016.02.006.
[9] Jankowski T. Influence of structural characteristics on liquid aerosol filtration in multilayer nonwoven fabrics of the spunlace type[J]. Fibres & Textiles in Eastern Europe, 2009, 17(4): 87-92.
[10] Sutter B, Bémer D, Appert-Collin J C, et al. Evaporation of liquid semi-volatile aerosols collected on fibrous filters[J]. Aerosol Science and Technology, 2010, 44(5): 395-404. DOI:10.1080/02786821003674244.
[11] Li P, Wang C Y, Zhang Y Y, et al. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. DOI:10.1002/smll.201401553.
[12] Zhao Y, Zhong Z X, Low Z X, et al. A multifunctional multi-walled carbon nanotubes/ceramic membrane composite filter for air purification[J]. RSC Advances, 2015, 5(112): 91951-91959. DOI:10.1039/c5ra18200j.
[13] Li P, Zong Y C, Zhang Y Y, et al. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency[J]. Nanoscale, 2013, 5(8): 3367-3372. DOI:10.1039/c3nr34325a.
[14] Park J H, Yoon K Y, Na H, et al. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy[J]. Science of the Total Environment, 2011, 409(19): 4132-4138. DOI:10.1016/j.scitotenv.2011.04.060.
[15] Mao X, Si Y, Chen Y C, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. RSC Advances, 2012, 2(32): 12216. DOI:10.1039/c2ra22086e.
[16] Wang C Y, Wu S Y, Jian M Q, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016, 9(9): 2590-2597. DOI:10.1007/s12274-016-1145-3.
[17] Dotti F, Varesano A, Montarsolo A, et al. Electrospun porous mats for high efficiency filtration[J]. Journal of Industrial Textiles, 2007, 37(2): 151-162. DOI:10.1177/1528083707078133.
[18] Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. DOI:10.1016/j.ijmultiphaseflow.2013.10.007.
[19] Mullins B J, Mead-Hunter R, Pitta R N, et al. Comparative performance of philic and phobic oil-mist filters[J]. AIChE Journal, 2014, 60(8): 2976-2984. DOI:10.1002/aic.14479.
[20] Wei X, Chen F, Wang H X, et al. Efficient removal of aerosol oil-mists using superoleophobic filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 871-877. DOI:10.1039/c7ta10045k.
[21] Gui X C, Wei J Q, Wang K L, et al. Carbon nanotube sponges[J]. Advanced Materials, 2010, 22(5): 617-621. DOI:10.1002/adma.200902986.
[22] Mu C L, Huang K T, Cheng T Y, et al. Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene[J]. Chemical Engineering Journal, 2016, 306: 806-815. DOI:10.1016/j.cej.2016.08.016.
[23] Xu C W, Xie W X, Si X D, et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter[J]. Environmental Research, 2018, 166: 167-174. DOI:10.1016/j.envres.2018.05.038.
[24] Charvet A, Gonthier Y, Bernis A, et al. Filtration of liquid aerosols with a horizontal fibrous filter[J]. Chemical Engineering Research and Design, 2008, 86(6): 569-576. DOI:10.1016/j.cherd.2007.11.008.
[25] Zhang J, Pan W X, Long Z W, et al. Study of the oil mist filtration performance: Pressure drop characteristics and filter efficiency model[J]. Aerosol and Air Quality Research, 2017, 17(4): 1063-1072. DOI:10.4209/aaqr.2016.06.0258.
[26] Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—A review[J]. Separation and Purification Technology, 2014, 133: 484-506. DOI:10.1016/j.seppur.2014.06.057.
[27] Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5): 1875-1886. DOI:10.1016/j.ces.2009.11.037.
[28] Lee K W, Liu B Y H. Theoretical study of aerosol filtration by fibrous filters[J]. Aerosol Science and Technology, 1982, 1(2): 147-161. DOI:10.1080/02786828208958584.
[29] Maze B, Vahedi Tafreshi H, Wang Q, et al. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures[J]. Journal of Aerosol Science, 2007, 38(5): 550-571. DOI:10.1016/j.jaerosci.2007.03.008.

Memo

Memo:
Biographies: Xu Chengwei(1987—), male, doctor, lecturer; Zhang Jun(corresponding author), male, doctor, professor, junzhang@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51576043).
Citation: Xu Chengwei, Yu Yan, Xie Wenxia, et al.Experimental investigation of oil particles filtration on carbon nanotubes composite filter[J].Journal of Southeast University(English Edition), 2019, 35(3):351-358.DOI:10.3969/j.issn.1003-7985.2019.03.011.
Last Update: 2019-09-20