[1] See S W, Balasubramanian R. Risk assessment of exposure to indoor aerosols associated with Chinese cooking[J]. Environmental Research, 2006, 102(2): 197-204. DOI:10.1016/j.envres.2005.12.013.
[2] Li Y C, Shu M, Ho S S H, et al. Characteristics of PM2.5 emitted from different cooking activities in China[J]. Atmospheric Research, 2015, 166: 83-91. DOI:10.1016/j.atmosres.2015.06.010.
[3] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment, 2004, 38(38): 6557-6564. DOI:10.1016/j.atmosenv.2004.08.034.
[4] Zhao X Y, Hu Q H, Wang X M, et al. Composition profiles of organic aerosols from Chinese residential cooking: Case study in urban Guangzhou, South China[J]. Journal of Atmospheric Chemistry, 2015, 72(1): 1-18. DOI:10.1007/s10874-015-9298-0.
[5] Frising T, Thomas D, Bémer D, et al. Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60(10): 2751-2762. DOI:10.1016/j.ces.2004.12.026.
[6] Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions[J]. Journal of Aerosol Science, 2004, 35(2): 263-278. DOI:10.1016/j.jaerosci.2003.07.003.
[7] Bredin A, Mullins B J. Influence of flow-interruption on filter performance during the filtration of liquid aerosols by fibrous filters[J]. Separation and Purification Technology, 2012, 90: 53-63. DOI:10.1016/j.seppur.2012.02.009.
[8] Manzo G M, Wu Y R, Chase G G, et al. Comparison of nonwoven glass and stainless steel microfiber media in aerosol coalescence filtration[J]. Separation and Purification Technology, 2016, 162: 14-19. DOI:10.1016/j.seppur.2016.02.006.
[9] Jankowski T. Influence of structural characteristics on liquid aerosol filtration in multilayer nonwoven fabrics of the spunlace type[J]. Fibres & Textiles in Eastern Europe, 2009, 17(4): 87-92.
[10] Sutter B, Bémer D, Appert-Collin J C, et al. Evaporation of liquid semi-volatile aerosols collected on fibrous filters[J]. Aerosol Science and Technology, 2010, 44(5): 395-404. DOI:10.1080/02786821003674244.
[11] Li P, Wang C Y, Zhang Y Y, et al. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. DOI:10.1002/smll.201401553.
[12] Zhao Y, Zhong Z X, Low Z X, et al. A multifunctional multi-walled carbon nanotubes/ceramic membrane composite filter for air purification[J]. RSC Advances, 2015, 5(112): 91951-91959. DOI:10.1039/c5ra18200j.
[13] Li P, Zong Y C, Zhang Y Y, et al. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency[J]. Nanoscale, 2013, 5(8): 3367-3372. DOI:10.1039/c3nr34325a.
[14] Park J H, Yoon K Y, Na H, et al. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy[J]. Science of the Total Environment, 2011, 409(19): 4132-4138. DOI:10.1016/j.scitotenv.2011.04.060.
[15] Mao X, Si Y, Chen Y C, et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration[J]. RSC Advances, 2012, 2(32): 12216. DOI:10.1039/c2ra22086e.
[16] Wang C Y, Wu S Y, Jian M Q, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016, 9(9): 2590-2597. DOI:10.1007/s12274-016-1145-3.
[17] Dotti F, Varesano A, Montarsolo A, et al. Electrospun porous mats for high efficiency filtration[J]. Journal of Industrial Textiles, 2007, 37(2): 151-162. DOI:10.1177/1528083707078133.
[18] Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. DOI:10.1016/j.ijmultiphaseflow.2013.10.007.
[19] Mullins B J, Mead-Hunter R, Pitta R N, et al. Comparative performance of philic and phobic oil-mist filters[J]. AIChE Journal, 2014, 60(8): 2976-2984. DOI:10.1002/aic.14479.
[20] Wei X, Chen F, Wang H X, et al. Efficient removal of aerosol oil-mists using superoleophobic filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 871-877. DOI:10.1039/c7ta10045k.
[21] Gui X C, Wei J Q, Wang K L, et al. Carbon nanotube sponges[J]. Advanced Materials, 2010, 22(5): 617-621. DOI:10.1002/adma.200902986.
[22] Mu C L, Huang K T, Cheng T Y, et al. Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene[J]. Chemical Engineering Journal, 2016, 306: 806-815. DOI:10.1016/j.cej.2016.08.016.
[23] Xu C W, Xie W X, Si X D, et al. Photocatalytic degradation of cooking fume on a TiO2-coated carbon nanotubes composite filter[J]. Environmental Research, 2018, 166: 167-174. DOI:10.1016/j.envres.2018.05.038.
[24] Charvet A, Gonthier Y, Bernis A, et al. Filtration of liquid aerosols with a horizontal fibrous filter[J]. Chemical Engineering Research and Design, 2008, 86(6): 569-576. DOI:10.1016/j.cherd.2007.11.008.
[25] Zhang J, Pan W X, Long Z W, et al. Study of the oil mist filtration performance: Pressure drop characteristics and filter efficiency model[J]. Aerosol and Air Quality Research, 2017, 17(4): 1063-1072. DOI:10.4209/aaqr.2016.06.0258.
[26] Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—A review[J]. Separation and Purification Technology, 2014, 133: 484-506. DOI:10.1016/j.seppur.2014.06.057.
[27] Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5): 1875-1886. DOI:10.1016/j.ces.2009.11.037.
[28] Lee K W, Liu B Y H. Theoretical study of aerosol filtration by fibrous filters[J]. Aerosol Science and Technology, 1982, 1(2): 147-161. DOI:10.1080/02786828208958584.
[29] Maze B, Vahedi Tafreshi H, Wang Q, et al. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures[J]. Journal of Aerosol Science, 2007, 38(5): 550-571. DOI:10.1016/j.jaerosci.2007.03.008.