[1] Vaseghi B, Pourmina M A, Mobayen S. Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control [J].Nonlinear Dynamics, 2017, 89(3): 1689-1704. DOI: 10.1007/s11071-017-3543-9.
[2] Xiong L, Liu Z L, Zhang X G. Dynamical analysis, synchronization, circuit design, and secure communication of a novel hyperchaotic system[J]. Complexity, 2017, 2017: 1-23. DOI:10.1155/2017/4962739.
[3] Acho L. A chaotic secure communication system design based on iterative learning control theory[J].Applied Sciences, 2016, 6(10): 311. DOI:10.3390/app6100311.
[4] Kocamaz U E, Cicek S, Uyaroglu Y. Secure communication with chaos and electronic circuit design using passivity-based synchronization [J]. Journal of Circuits systems and Computers, 2018, 27(4):1850057. DOI: 10.1142/S0218126618500573.
[5] Mata-Machuca J L, Aguilar-Lopez R. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications [J]. European Physical Journal Plus, 2018, 133:14. DOI: 10.1140/epjp/i2018-11840-4.
[6] Durdu A, Uyaro(ˇoverg)lu Y. The shortest synchronization time with optimal fractional order value using a novel chaotic attractor based on secure communication[J]. Chaos, Solitons & Fractals, 2017, 104: 98-106. DOI:10.1016/j.chaos.2017.08.008.
[7] Smaoui N, Zribi M, Elmokadem T. A novel secure communication scheme based on the Karhunen-Loéve decomposition and the synchronization of hyperchaotic Lü systems[J]. Nonlinear Dynamics, 2017, 90(1): 271-285. DOI:10.1007/s11071-017-3660-5.
[8] Ding M Z, Ding E J, Ditto W L, et al. Control and synchronization of chaos in high dimensional systems: Review of some recent results[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7(4): 644-652. DOI:10.1063/1.166284.
[9] Oden J, Lavrov R, Chembo Y K, et al. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(11): 114311. DOI:10.1063/1.5007867.
[10] Maheri M, Md Arifin N. Application adaptive exponential synchronization of chaotic dynamical systems in secure communications[J]. Advances in Difference Equations, 2017, 2017: 96. DOI:10.1186/s13662-017-1158-6.
[11] Abd M H, Tahir F R, Al-Suhail G A, et al. An adaptive observer synchronization using chaotic time-delay system for secure communication [J].Nonlinear Dynamics, 2017, 90(4): 2583-2598.
[12] Yin J L, Duan X C, Tian L X. Optical secure communication modeled by the perturbed nonlinear Schrödinger equation[J]. Optical and Quantum Electronics, 2017, 49(10): 317. DOI:10.1007/s11082-017-1111-7.
[13] Yin J L, Zhao L W, Tian L X. Melnikov’s criteria and chaos analysis in the nonlinear Schrödinger equation with Kerr law nonlinearity[J]. Abstract and Applied Analysis, 2014, 2014: 1-12. DOI:10.1155/2014/650781.
[14] Taghizadeh N, Mirzazadeh M, Mahmoodirad A. Application of Kudryashov method for high-order nonlinear Schrödinger equation[J]. Indian Journal of Physics, 2013, 87(8): 781-785. DOI:10.1007/s12648-013-0296-2.
[15] Gao H, Xu T Z, Wang G W. Optical solitons for the perturbed nonlinear Schrodinger equation with Kerr law and non-Kerr law nonlinearity[J]. Zeitschrift Fur Naturforschung Section A—A Journal of Physical Sciences, 2018, 73(4): 315-321.DOI: 10.1515/zna-2017-0400.
[16] Wan P, Sun D H, Chen D, et al. Exponential synchronization of inertial reaction-diffusion coupled neural networks with proportional delay via periodically intermittent control[J].Neurocomputing, 2019, 356: 195-205. DOI:10.1016/j.neucom.2019.05.028.