[1] Grava S. Urban transportation systems, choices for communities [M]. New York: McGraw-Hill, 2003.
[2] Kuwabara T, Hiraishi M, Goda K, et al. New solution for urban traffic: Small-type monorail system[J].Hitachi Review, 2001, 50(4):139-143.
[3] Kouroussis G, van Parys L, Conti C, et al. Prediction of ground vibrations induced by urban railway traffic: An analysis of the coupling assumptions between vehicle, track, soil, and buildings[J]. International Journal of Acoustics and Vibration, 2013, 18(4): 163-172.. DOI:10.20855/ijav.2013.18.4330.
[4] Sugawara M. Research on urban monorails corresponding to actual demand[J]. Journal of Japanese Monorail Association, 2000, 91: 2-26.
[5] Boehm E, Frisch H. The new operating system of the H-train in dortmund[J]. Verkehr und Technik, 1994, 47: 465-470.
[6] Rahier H W, Scharf P. Sicherheitstechnische prüfung der fahrerlosen kabinenbahn des flughafens duesseldorf[J]. Signal und Draht, 2002, 94: 20-22.(in Germany)
[7] Zhang N, Xia H. Dynamic analysis of coupled vehicle-bridge system based on inter-system iteration method[J]. Computers & Structures, 2013, 114/115: 26-34. DOI:10.1016/j.compstruc.2012.10.007.
[8] Kouroussis G, Gazetas G, Anastasopoulos I, et al. Discrete modelling of vertical track-soil coupling for vehicle-track dynamics[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12): 1711-1723. DOI:10.1016/j.soildyn.2011.07.007.
[9] Andersson A, O’Connor A, Karoumi R. Passive and adaptive damping systems for vibration mitigation and increased fatigue service life of a tied arch railway bridge[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(9): 748-757. DOI:10.1111/mice.12116.
[10] Ling L, Dhanasekar M, Thambiratnam D P. Dynamic response of the train-track-bridge system subjected to derailment impacts[J]. Vehicle System Dynamics, 2018, 56(4): 638-657. DOI:10.1080/00423114.2017.1398341.
[11] Kim J, LynchJ P. Experimental analysis of vehicle-bridge interaction using a wireless monitoring system and a two-stage system identification technique[J]. Mechanical Systems and Signal Processing, 2012, 28: 3-19. DOI:10.1016/j.ymssp.2011.12.008.
[12] Liu Y, Tan Z C, Yang C X. Refined finite element modeling of a damaged bridge with virtual distortion method coupling solid superelement[J]. Mechanical Systems and Signal Processing, 2017, 93: 559-577. DOI:10.1016/j.ymssp.2017.02.032.
[13] Wu S Q, Law S S. Evaluating the response statistics of an uncertain bridge-vehicle system[J]. Mechanical Systems and Signal Processing, 2012, 27: 576-589. DOI:10.1016/j.ymssp.2011.07.019.
[14] Chen Z, Xie Z P, Zhang J. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring[J]. Mechanical Systems and Signal Processing, 2018, 104: 370-383. DOI:10.1016/j.ymssp.2017.11.001.
[15] Zhou S H, Song G Q, Wang R P, et al. Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation[J]. Mechanical Systems and Signal Processing, 2017, 87: 259-278. DOI:10.1016/j.ymssp.2016.10.025.
[16] Jin Z B, Li G Q, Pei S L, et al. Vehicle-induced random vibration of railway bridges: A spectral approach[J]. International Journal of Rail Transportation, 2017, 5(4): 191-212. DOI:10.1080/23248378.2017.1338538.
[17] Antolín P, Zhang N, Goicolea J M, et al. Consideration of nonlinear wheel-rail contact forces for dynamic vehicle-bridge interaction in high-speed railways[J]. Journal of Sound and Vibration, 2013, 332(5): 1231-1251. DOI:10.1016/j.jsv.2012.10.022.
[18] Lei X, Noda N A. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile[J]. Journal of Sound and Vibration, 2002, 258(1): 147-165. DOI:10.1006/jsvi.2002.5107.
[19] Kim C W, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(10): 1225-1245. DOI:10.1002/eqe.580.
[20] Zhai W M, Xia H, Cai C B, et al. High-speed train-track-bridge dynamic interactions—Part I: Theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24. DOI:10.1080/23248378.2013.791498.
[21] Lee C H, Kim C W, Kawatani M, et al. Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains[J]. Engineering Structures, 2005, 27(14): 1999-2013. DOI:10.1016/j.engstruct.2005.06.014.
[22] Kim Y S, Lim T K, Park S H, et al. Dynamic model for ride comfort evaluations of the rubber-tired light rail vehicle[J]. Vehicle System Dynamics, 2008, 46(11): 1061-1082. DOI:10.1080/00423110701759637.
[23] Tsunashima H. Dynamics of automated guideway transit vehicle with single-axle bogies[J]. Vehicle System Dynamics, 2003, 39(5): 365-397. DOI:10.1076/vesd.39.5.365.14146.
[24] Cai C B, He Q L, Zhu S Y, et al. Dynamic interaction of suspension-type monorail vehicle and bridge: Numerical simulation and experiment[J]. Mechanical Systems and Signal Processing, 2019, 118: 388-407. DOI:10.1016/j.ymssp.2018.08.062.
[25] Gou H Y, Zhou W, Yang C W, et al. Dynamic response of a long-span concrete-filled steel tube tied arch bridge and the riding comfort of monorail trains[J]. Applied Sciences, 2018, 8(4): 650. DOI:10.3390/app8040650.
[26] Wang H L, Zhu E Y. Dynamic response analysis of monorail steel-concrete composite beam-train interaction system considering slip effect[J]. Engineering Structures, 2018, 160: 257-269. DOI:10.1016/j.engstruct.2018.01.037.
[27] Naeimi M, Tatari M, Esmaeilzadeh A, et al. Dynamic interaction of the monorail-bridge system using a combined finite element multibody-based model[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2015, 229(2): 132-151. DOI:10.1177/1464419314551189.
[28] Meisinger R. Dynamic analysis of the Dortmund University campus sky train[R].Nürnberg, Germany: Technische Hochschule Nürnberg Georg Simon Ohm, 2009-03-19.
[29] Meisinger R. Analysis of the lateral dynamics of a sky train with periodic track irregularities[C]// Proceedings of the Second International Conference on Dynamics, Vibration and Control. Beijing, China, 2006:522-534.
[30] Zhong Y M. Analysis of flexible car body of straddle monorail vehicle[J]. IOP Conference Series: Materials Science and Engineering, 2018, 324: 012071. DOI:10.1088/1757-899x/324/1/012071.
[31] Guo Q, Wang P, Chen J Y, et al. Dynamic analysis on suspended monorail vehicles passing through turnouts[J]. IOP Conference Series: Materials Science and Engineering, 2018, 439: 042078. DOI:10.1088/1757-899x/439/4/042078.
[32] Muller S. Engineering operation and state of development of the H-Bahn system[J]. Siemens Review, 1978, 45:523-527.
[33] Bao Y L, Li Y L, Ding J J. A case study of dynamic response analysis and safety assessment for a suspended monorail system[J]. International Journal of Environmental Research and Public Health, 2016, 13(11): 1121-1138.DOI:10.3390/ijerph13111121.
[34] Pu Q W, Chen X H, Tao G A, et al. Bogie of hanged-type monorail vehicle[J]. Electric Drive for Locomotives, 2015(2): 90-93. DOI:10.13890/j.issn.1000-128x.2015.02.022. (in Chinese)
[35] Xiao T, Pu Q W, Chen X H, et al. Dynamic simulation of hanged-type monorail vehicle[J]. Electric Drive for Locomotives, 2015(2): 10-13. DOI:10.13890/j.issn.1000-128x.2015.02.004. (in Chinese)
[36] Jiang Y Z, Wu P B, Zeng J, et al. Comparison of the curve negotiation properties of two different articulated monorail vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(8): 831-843. DOI:10.1177/0954409718810946.
[37] Jiang Y Z, Wu P B, Zeng J, et al. Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm[J]. Vehicle System Dynamics, 2020, 58(1): 74-91. DOI:10.1080/00423114.2019.1566557.
[38] Jiang Y Z, Wu P B, Zeng J, et al. Detection and alleviation of the abnormal vibration of the monorail based on experiment and simulation[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 282-295. DOI:10.1177/1461348419825605.
[39] Jiang Y Z, Zhong W S, Wu P B, et al. Prediction of wheel wear of different types of articulated monorail based on co-simulation of MATLAB and UM software[J]. Advances in Mechanical Engineering, 2019, 11(6): 168781401985684. DOI:10.1177/1687814019856841.
[40] Jiang Y Z, Wu P B, Zeng J, et al. Simplified and relatively precise back-calculation method for the pavement excitation of the monorail[J]. International Journal of Pavement Engineering, 2019: 1-18. DOI:10.1080/10298436.2019.1623401.
[41] Jiang Y Z, Wu P B, Zeng J, et al. Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics[J]. Vehicle System Dynamics, 2019: 1-20. DOI:10.1080/00423114.2019.1668029.
[42] He Q L, Cai C B, Zhu S Y, et al. Key parameter selection of suspended monorail system based on vehicle-bridge dynamical interaction analysis[J]. Vehicle System Dynamics, 2020, 58(3): 339-356. DOI:10.1080/00423114.2019.1577470.
[43] Jiang Y Z, Wang Y M, Xie Q. Scheme and analysis of a kind of suspended monorail’s bogie structure[J]. Electric Drive for Locomotives, 2015(6): 56-59. DOI:10.13890/j.issn.1000-128x.2015.06.015. (in Chinese)
[44] Jiang Y Z, Wang Y M, Xie Q. Analysis of the dynamics and stationarity of suspend monorail[J]. Urban Mass Transit, 2017, 4:97-100.(in Chinese)
[45] Sichuan Engineering Construction Bureau. DBJ51/T099—2018 Design standard for suspended monorail[S].Chengdu: Sichuan Standard Press, 2016.(in Chinese)