|Table of Contents|

[1] Jiang Yongzhi, Wu Pingbo, Zeng Jing, Wei Lai, et al. Design and dynamic analysis of the micro-suspended monorail [J]. Journal of Southeast University (English Edition), 2020, 36 (1): 14-23. [doi:10.3969/j.issn.1003-7985.2020.01.003]
Copy

Design and dynamic analysis of the micro-suspended monorail()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 1
Page:
14-23
Research Field:
Traffic and Transportation Engineering
Publishing date:
2020-03-20

Info

Title:
Design and dynamic analysis of the micro-suspended monorail
Author(s):
Jiang Yongzhi1 Wu Pingbo1 Zeng Jing1 Wei Lai1 Wang Xing2 He Qinglie1 Wang Shuai1
1State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2National Institute of Measurement and Testing Technology, Chengdu 610021, China
Keywords:
micro-suspended monorail dynamic model magic formula shock coupler force
PACS:
U270.1;U232
DOI:
10.3969/j.issn.1003-7985.2020.01.003
Abstract:
A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail. The formula of the tire is established by using the magic formula. Through the modal analysis of the vehicle, the modes of the vehicle are obtained, and resonance has little effect on the vehicle. When the vehicle moves in a right turn curve, it yaws in the clockwise direction. Under the action of the guidewheel(stable wheel)force, the front bogie yaws clockwise but the rear one yaws counterclockwise. Moreover, the two bogies and the car body roll during the curve passing process of the vehicle. When the vehicle speed is high enough, the left drive wheel will derail and the anti-overturning moments are provided by the stable wheels. Then, the car body yaws in the counterclockwise direction when it moves out of the curve. In the simulation of the vehicle passing the curve, the clearance between the guide wheel and rail surface will lead to a fatal impact on the bogie. At the same time, the dynamic response of the vehicle under the crosswind is tested. The vehicle will not overturn due to the crosswind. Finally, the collision of adjacent vehicles is analyzed. The results show that there is an intermittent collision force between two vehicles due to the vehicle’s non synchronous pitch motion.

References:

[1] Grava S. Urban transportation systems, choices for communities [M]. New York: McGraw-Hill, 2003.
[2] Kuwabara T, Hiraishi M, Goda K, et al. New solution for urban traffic: Small-type monorail system[J].Hitachi Review, 2001, 50(4):139-143.
[3] Kouroussis G, van Parys L, Conti C, et al. Prediction of ground vibrations induced by urban railway traffic: An analysis of the coupling assumptions between vehicle, track, soil, and buildings[J]. International Journal of Acoustics and Vibration, 2013, 18(4): 163-172.. DOI:10.20855/ijav.2013.18.4330.
[4] Sugawara M. Research on urban monorails corresponding to actual demand[J]. Journal of Japanese Monorail Association, 2000, 91: 2-26.
[5] Boehm E, Frisch H. The new operating system of the H-train in dortmund[J]. Verkehr und Technik, 1994, 47: 465-470.
[6] Rahier H W, Scharf P. Sicherheitstechnische prüfung der fahrerlosen kabinenbahn des flughafens duesseldorf[J]. Signal und Draht, 2002, 94: 20-22.(in Germany)
[7] Zhang N, Xia H. Dynamic analysis of coupled vehicle-bridge system based on inter-system iteration method[J]. Computers & Structures, 2013, 114/115: 26-34. DOI:10.1016/j.compstruc.2012.10.007.
[8] Kouroussis G, Gazetas G, Anastasopoulos I, et al. Discrete modelling of vertical track-soil coupling for vehicle-track dynamics[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12): 1711-1723. DOI:10.1016/j.soildyn.2011.07.007.
[9] Andersson A, O’Connor A, Karoumi R. Passive and adaptive damping systems for vibration mitigation and increased fatigue service life of a tied arch railway bridge[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(9): 748-757. DOI:10.1111/mice.12116.
[10] Ling L, Dhanasekar M, Thambiratnam D P. Dynamic response of the train-track-bridge system subjected to derailment impacts[J]. Vehicle System Dynamics, 2018, 56(4): 638-657. DOI:10.1080/00423114.2017.1398341.
[11] Kim J, LynchJ P. Experimental analysis of vehicle-bridge interaction using a wireless monitoring system and a two-stage system identification technique[J]. Mechanical Systems and Signal Processing, 2012, 28: 3-19. DOI:10.1016/j.ymssp.2011.12.008.
[12] Liu Y, Tan Z C, Yang C X. Refined finite element modeling of a damaged bridge with virtual distortion method coupling solid superelement[J]. Mechanical Systems and Signal Processing, 2017, 93: 559-577. DOI:10.1016/j.ymssp.2017.02.032.
[13] Wu S Q, Law S S. Evaluating the response statistics of an uncertain bridge-vehicle system[J]. Mechanical Systems and Signal Processing, 2012, 27: 576-589. DOI:10.1016/j.ymssp.2011.07.019.
[14] Chen Z, Xie Z P, Zhang J. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring[J]. Mechanical Systems and Signal Processing, 2018, 104: 370-383. DOI:10.1016/j.ymssp.2017.11.001.
[15] Zhou S H, Song G Q, Wang R P, et al. Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation[J]. Mechanical Systems and Signal Processing, 2017, 87: 259-278. DOI:10.1016/j.ymssp.2016.10.025.
[16] Jin Z B, Li G Q, Pei S L, et al. Vehicle-induced random vibration of railway bridges: A spectral approach[J]. International Journal of Rail Transportation, 2017, 5(4): 191-212. DOI:10.1080/23248378.2017.1338538.
[17] Antolín P, Zhang N, Goicolea J M, et al. Consideration of nonlinear wheel-rail contact forces for dynamic vehicle-bridge interaction in high-speed railways[J]. Journal of Sound and Vibration, 2013, 332(5): 1231-1251. DOI:10.1016/j.jsv.2012.10.022.
[18] Lei X, Noda N A. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile[J]. Journal of Sound and Vibration, 2002, 258(1): 147-165. DOI:10.1006/jsvi.2002.5107.
[19] Kim C W, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(10): 1225-1245. DOI:10.1002/eqe.580.
[20] Zhai W M, Xia H, Cai C B, et al. High-speed train-track-bridge dynamic interactions—Part I: Theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24. DOI:10.1080/23248378.2013.791498.
[21] Lee C H, Kim C W, Kawatani M, et al. Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains[J]. Engineering Structures, 2005, 27(14): 1999-2013. DOI:10.1016/j.engstruct.2005.06.014.
[22] Kim Y S, Lim T K, Park S H, et al. Dynamic model for ride comfort evaluations of the rubber-tired light rail vehicle[J]. Vehicle System Dynamics, 2008, 46(11): 1061-1082. DOI:10.1080/00423110701759637.
[23] Tsunashima H. Dynamics of automated guideway transit vehicle with single-axle bogies[J]. Vehicle System Dynamics, 2003, 39(5): 365-397. DOI:10.1076/vesd.39.5.365.14146.
[24] Cai C B, He Q L, Zhu S Y, et al. Dynamic interaction of suspension-type monorail vehicle and bridge: Numerical simulation and experiment[J]. Mechanical Systems and Signal Processing, 2019, 118: 388-407. DOI:10.1016/j.ymssp.2018.08.062.
[25] Gou H Y, Zhou W, Yang C W, et al. Dynamic response of a long-span concrete-filled steel tube tied arch bridge and the riding comfort of monorail trains[J]. Applied Sciences, 2018, 8(4): 650. DOI:10.3390/app8040650.
[26] Wang H L, Zhu E Y. Dynamic response analysis of monorail steel-concrete composite beam-train interaction system considering slip effect[J]. Engineering Structures, 2018, 160: 257-269. DOI:10.1016/j.engstruct.2018.01.037.
[27] Naeimi M, Tatari M, Esmaeilzadeh A, et al. Dynamic interaction of the monorail-bridge system using a combined finite element multibody-based model[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2015, 229(2): 132-151. DOI:10.1177/1464419314551189.
[28] Meisinger R. Dynamic analysis of the Dortmund University campus sky train[R].Nürnberg, Germany: Technische Hochschule Nürnberg Georg Simon Ohm, 2009-03-19.
[29] Meisinger R. Analysis of the lateral dynamics of a sky train with periodic track irregularities[C]// Proceedings of the Second International Conference on Dynamics, Vibration and Control. Beijing, China, 2006:522-534.
[30] Zhong Y M. Analysis of flexible car body of straddle monorail vehicle[J]. IOP Conference Series: Materials Science and Engineering, 2018, 324: 012071. DOI:10.1088/1757-899x/324/1/012071.
[31] Guo Q, Wang P, Chen J Y, et al. Dynamic analysis on suspended monorail vehicles passing through turnouts[J]. IOP Conference Series: Materials Science and Engineering, 2018, 439: 042078. DOI:10.1088/1757-899x/439/4/042078.
[32] Muller S. Engineering operation and state of development of the H-Bahn system[J]. Siemens Review, 1978, 45:523-527.
[33] Bao Y L, Li Y L, Ding J J. A case study of dynamic response analysis and safety assessment for a suspended monorail system[J]. International Journal of Environmental Research and Public Health, 2016, 13(11): 1121-1138.DOI:10.3390/ijerph13111121.
[34] Pu Q W, Chen X H, Tao G A, et al. Bogie of hanged-type monorail vehicle[J]. Electric Drive for Locomotives, 2015(2): 90-93. DOI:10.13890/j.issn.1000-128x.2015.02.022. (in Chinese)
[35] Xiao T, Pu Q W, Chen X H, et al. Dynamic simulation of hanged-type monorail vehicle[J]. Electric Drive for Locomotives, 2015(2): 10-13. DOI:10.13890/j.issn.1000-128x.2015.02.004. (in Chinese)
[36] Jiang Y Z, Wu P B, Zeng J, et al. Comparison of the curve negotiation properties of two different articulated monorail vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(8): 831-843. DOI:10.1177/0954409718810946.
[37] Jiang Y Z, Wu P B, Zeng J, et al. Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm[J]. Vehicle System Dynamics, 2020, 58(1): 74-91. DOI:10.1080/00423114.2019.1566557.
[38] Jiang Y Z, Wu P B, Zeng J, et al. Detection and alleviation of the abnormal vibration of the monorail based on experiment and simulation[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 282-295. DOI:10.1177/1461348419825605.
[39] Jiang Y Z, Zhong W S, Wu P B, et al. Prediction of wheel wear of different types of articulated monorail based on co-simulation of MATLAB and UM software[J]. Advances in Mechanical Engineering, 2019, 11(6): 168781401985684. DOI:10.1177/1687814019856841.
[40] Jiang Y Z, Wu P B, Zeng J, et al. Simplified and relatively precise back-calculation method for the pavement excitation of the monorail[J]. International Journal of Pavement Engineering, 2019: 1-18. DOI:10.1080/10298436.2019.1623401.
[41] Jiang Y Z, Wu P B, Zeng J, et al. Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics[J]. Vehicle System Dynamics, 2019: 1-20. DOI:10.1080/00423114.2019.1668029.
[42] He Q L, Cai C B, Zhu S Y, et al. Key parameter selection of suspended monorail system based on vehicle-bridge dynamical interaction analysis[J]. Vehicle System Dynamics, 2020, 58(3): 339-356. DOI:10.1080/00423114.2019.1577470.
[43] Jiang Y Z, Wang Y M, Xie Q. Scheme and analysis of a kind of suspended monorail’s bogie structure[J]. Electric Drive for Locomotives, 2015(6): 56-59. DOI:10.13890/j.issn.1000-128x.2015.06.015. (in Chinese)
[44] Jiang Y Z, Wang Y M, Xie Q. Analysis of the dynamics and stationarity of suspend monorail[J]. Urban Mass Transit, 2017, 4:97-100.(in Chinese)
[45] Sichuan Engineering Construction Bureau. DBJ51/T099—2018 Design standard for suspended monorail[S].Chengdu: Sichuan Standard Press, 2016.(in Chinese)

Memo

Memo:
Biographies: Jiang Yongzhi(1990—), male, Ph.D. candidate; Wu Pingbo(corresponding author), male, doctor, professor, wupingbo@163.com.
Foundation items: The National Key Research and Development Program of China(No.2018YFB1201702), the Program of State Key Laboratory of Traction Power(No.2018TPL_T11), the Fundamental Research Funds for the Central Universities(No.2682017CX009).
Citation: Jiang Yongzhi, Wu Pingbo, Zeng Jing, et al.Design and dynamic analysis of the micro-suspended monorail[J].Journal of Southeast University(English Edition), 2020, 36(1):14-23.DOI:10.3969/j.issn.1003-7985.2020.01.003.
Last Update: 2020-03-20