[1] Li J M, Yao X F, Wang H, et al. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis[J].Mechanical Systems and Signal Processing, 2019, 126: 568-589. DOI:10.1016/j.ymssp.2019.02.056.
[2] Guo J C, Zhen D, Li H Y, et al. Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method[J].Measurement, 2019, 139: 226-235. DOI:10.1016/j.measurement.2019.02.072.
[3] Yan X A, Liu Y, Jia M P. A feature selection framework-based multiscale morphological analysis algorithm for fault diagnosis of rolling element bearing[J].IEEE Access, 2019, 7: 123436-123452. DOI:10.1109/access.2019.2937751.
[4] Yan X A, Liu Y, Jia M P, et al. A multi-stage hybrid fault diagnosis approach for rolling element bearing under various working conditions[J].IEEE Access, 2019, 7: 138426-138441. DOI:10.1109/access.2019.2937828.
[5] Li H K, Yang R, Ren Y J, et al. Rolling element bearing diagnosis using particle filter and kurtogram[J]. Journal of Mechanical Engineering, 2017, 53(3): 63-72. DOI:10.3901/JME.2017.03.063. (in Chinese)
[6] Zhou F Y, Jin L P, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.(in Chinese)
[7] Eren L, Ince T, Kiranyaz S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J].Journal of Signal Processing Systems, 2019, 91(2): 179-189. DOI:10.1007/s11265-018-1378-3.
[8] Liu X C, Zhou Q C, Zhao J, et al. Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network[J].Sensors, 2019, 19(4): 972-1-972-20. DOI:10.3390/s19040972.
[9] Li H, Zhang Q, Qin X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131. DOI:10.13465/j.cnki.jvs.2018.19.020. (in Chinese)
[10] Oberlin T, Meignen S, Perrier V. The Fourier-based synchrosqueezing transform[C]//2014 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Florence, Italy, 2014: 315-319. DOI:10.1109/icassp.2014.6853609.
[11] Stankovic L, Djurovic I, Stankovic S, et al. Instantaneous frequency in time-frequency analysis: Enhanced concepts and performance of estimation algorithms[J].Digital Signal Processing, 2014, 35: 1-13. DOI:10.1016/j.dsp.2014.09.008.
[12] Yu G, Wang Z H, Zhao P. Multisynchrosqueezing transform[J].IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5455. DOI:10.1109/tie.2018.2868296.
[13] Su W S, Wang F T, Zhu H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement[J].Mechanical Systems and Signal Processing, 2010, 24(5): 1458-1472. DOI:10.1016/j.ymssp.2009.11.011.
[14] Cai T T, Silverman B W. Incorporating information on neighboring coefficients into wavelet estimation[J]. Sankhya, 2001, 63(2): 127-148.
[15] Wang S B, Chen X F, Cai G G, et al. Matching demodulation transform and synchrosqueezing in time-frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(1): 69-84. DOI:10.1109/tsp.2013.2276393.
[16] Wang Y H, Xu C, Xu C, et al. Packing convolutional neural networks in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2495-2510. DOI:10.1109/tpami.2018.2857824.
[17] Sun J, Cao W, Xu Z, et al. Learning a convolutional neural network for non-uniform motion blur removal[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, MA, USA, 2015: 769-777. DOI:10.1109/cvpr.2015.7298677.
[18] Yuan J H, Han T, Tang J, et al. Intelligent fault diagnosis method for rolling bearings based on wavelet time-frequency diagram and CNN[J]. Machine Design and Research, 2017, 33(2): 93-97.(in Chinese)