[1] Alavi B, Krawinkler H. Strengthening of moment-resisting frame structures against near-fault ground motion effects [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6): 707-722. DOI:10.1002/eqe.370.
[2] Wada A, Qu Z, Ito H, et al. Seismic retrofit using rocking walls and steel dampers [C]//ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco, USA, 2009: 1010-1021.
[3] Wada A, Qu Z, Sakata H. Seismic retrofit of existing SRC frames using rocking walls and steel dampers [J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(3): 259-266. DOI:10.1007/s11709-011-0114-x. (in Chinese)
[4] Qu Z, Wada A, Motoyui S, et al. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2075- 2091.DOI:10.1002/eqe.2175.
[5] Janhunen B, Tipping S, Mar T. Seismic retrofit of a 1960s steel moment-frame highrise using a pivoting spine [C]//Proceedings of the Structural Engineering Association of California 82nd Annual Convention. San Diego, USA, 2013: 320-336.
[6] Makris N, Aghagholizadeh M. The dynamics of an elastic structure coupled with a rocking wall [J]. Earthquake Engineering and Structural Dynamics, 2017, 46(6): 945-962. DOI:10.1002/eqe.2838.
[7] Kurama Y, Sause R, Pessiki S. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4):622-632. DOI:10.14359/700.
[8] Takeuchi T, Suzuki K. Performance-based design for truss-frame structures using energy dissipation devices [C]//Proceedings of the 4th International Conference on Behavior of Steel Structures in Seismic Areas. Naples, Italy, 2003: 55- 61.
[9] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2015, 114: 51-65. DOI:10.1016/j.jcsr.2015.07.002.
[10] Chen X, Takeuchi T, Matsui R. Simplified design procedure for controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2017, 135: 242-252. DOI:10.1016/j.jcsr.2017.04.017.
[11] Chen X, Takeuchi T, Matsui R. Seismic performance and evaluation of controlled spine frames applied in high-rise buildings [J]. Earthquake Spectra, 2018, 34(3): 1431-1458.DOI:10.1193/080817eqs157m.
[12] Djojo G S, Clifton G C, Henry R S, et al. Experimental testing of a double acting ring spring system for use in rocking steel shear walls [C]//8th International Conference on Behavior of Steel Structures in Seismic Areas. Shanghai, China, 2015: 1245-1252.
[13] Du Y F, Wu D Y. Performance analysis of light energy dissipative rocking frame designed on the basis of stiffness demand [J]. China Civil Engineering Journal, 2014, 47(1): 24-35. DOI:10.15951/j.tmgcxb.2014.01.006. (in Chinese)
[14] Wiebe L, Christopoulos C. Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections[J]. Journal of Earthquake Engineering, 2009, 13(sup1): 83-108. DOI:10.1080/13632460902813315.
[15] Wu S J, Pan P, Zhang D B. Higher mode effects in frame pin-supported wall structure by using a distributed model [J]. Earthquake Engineering and Structural Dynamics, 2016, 45(14): 2371-2387.DOI:10.1002/eqe.2766.
[16] Grigorian C E, Grigorian M. Performance control and efficient design of rocking-wall moment frames[J]. Journal of Structural Engineering, 2016, 142(2): 04015139. DOI:10.1061/(asce)st.1943-541x.0001411.
[17] Grigorian M, Grigorian C. An introduction to the structural design of rocking wall-frames with a view to collapse prevention, self-alignment and repairability [J]. The Structural Design of Tall and Special Buildings, 2016, 25(2): 93-111.DOI:10.1002/tal.1230.
[18] Grigorian M, Grigorian C E. Sustainable earthquake-resisting system [J]. Journal of Structural Engineering, 2018, 144(2): 04017199.DOI:10.1061/(asce)st.1943-541x.0001900.
[19] Nima R, Moghadam A S, Aziminejad A. Continuum analysis approach for rocking core-moment frames [J]. Journal of Structural Engineering, 2018, 144(3): 04018006. DOI:10.1061/(asce)st.1943-541x.0001986.
[20] Wiebe L, Christopoulos C. A cantilever beam analogy for quantifying higher mode effects in multistorey buildings[J]. Earthquake Engineering & Structural Dynamics, 2015, 44: 1697-1716.DOI:10.1002/eqe.2549.
[21] Yang X Y, Wu J, Zhang J, et al. Post-yielding behavior of hinge-supported wall with buckling-restrained braces in base [J]. Journal of Earthquake and Tsunami, 2019, 13(3/4): 1940003.DOI:10.1142/s1793431119400037.
[22] Wang X T, Wang T, Qu Z. An experimental study of a damage-controllable plastic hinge-supported wall structure [J]. Earthquake Engineering and Structural Dynamics, 2018, 47(3): 594-612. DOI:10.1002/eqe.2981.
[23] Yang X Y, Feng Y L, Wu J, et al. Experimental study on seismic performance of hinged truss with buckling-restrained braces at base [J]. Journal of Southeast University(Natural Science Edition), 2018, 48(2): 303-309.(in Chinese)
[24] Clough R W, Penzien J. Dynamics of structures[M]. 3rd eds. Berkeley, CA, USA: Computer & Structures, Inc, 1995.
[25] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering[M]. Upper Saddle River, NJ, USA: Prentice Hall, 2007.
[26] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50011—2010 Code for seismic design of Buildings [S]. Beijing: China Architecture and Building Press, 2010.(in Chinese)