|Table of Contents|

[1] Sheng Xingping, Chen Jianlong,. An explicit representation and computation for the outer inverse [J]. Journal of Southeast University (English Edition), 2020, 36 (1): 118-122. [doi:10.3969/j.issn.1003-7985.2020.01.015]
Copy

An explicit representation and computation for the outer inverse()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 1
Page:
118-122
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2020-03-20

Info

Title:
An explicit representation and computation for the outer inverse
Author(s):
Sheng Xingping1 2 Chen Jianlong1
1School of Mathematics, Southeast University, Nanjing 211189, China
2School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, China
Keywords:
outer inverse explicit representation elementary operation computational complexity
PACS:
O151.21
DOI:
10.3969/j.issn.1003-7985.2020.01.015
Abstract:
First, an explicit representation A(2)T, S=(GA+E)-1G of the outer invers A(2)T, S for a matrix A∈Cm×n with the prescribed range T and null space S is derived, which is simpler than A(2)T, S=(GA+E)-1G-V(UV)-2UG proposed by Ji in 2005. Next, a new algorithm for computing the outer inverse A(2)T, S based on the improved representation A(2)T, S=(GA+E)-1G through elementary operations on an appropriate partitioned matrix [GA InIn 0] is proposed and investigated. Then, the computational complexity of the introduced algorithm is also analyzed in detail. Finally, two numerical examples are shown to illustrate that this method is correct.

References:

[1] Ben-Israel A, Greville T N E, Generalized inverse: Theory and applications [M]. 2nd eds. New York: Springer Verlag, 2003.
[2] Nashed M Z, Generalized inverse and applications [M]. New York: Academic Press, 1976.
[3] Wedin P A. Report UMINF 124.85, S-901 87 Perturbation results and condition number for outer inverses and especially for projections [R]. Umea, Sweden: Institution of Information Proceedings University of Umea, 1985.
[4] Nashed M Z, Chen X. Convergence of Newton-like methods for singular operator equations using outer inverses [J]. Numerische Mathematik, 1993, 66(1): 235-257. DOI:10.1007/bf01385696.
[5] Getson A J, Hsuan F G.{2} -inverse and their statistical applications [M]//Lecture Notes in Statistics 47. Berlin: Springer, 1988.
[6] Hsuan F, Langenberg P, Getson A. The {2} -inverse with applications to statistics [J]. Linear Algebra and Its Applications, 1985, 70: 241-248.DOI:10.1016/0024-3795(85)90055-2.
[7] Cai J, Chen G L. On determinantal representation for the generalized inverse A(2)T, S and its applications [J]. Numerical Linear Algebra with Applications, 2007, 14(3):169-182.DOI:10.1002/nla.513.
[8] Sheng X P, Chen G L. Several representations of generalized inverse A(2)T, S and their application [J]. International Journal of Computer Mathematics, 2008, 85(9): 1441-1453.DOI:10.1080/00207160701532767.
[9] Sheng X P, Chen G L. New proofs of two representations and minor of generalized inverse A(2)T, S[J]. Applied Mathematics and Computation, 2011, 217(13): 6309-6314.DOI:10.1016/j.amc.2011.01.003.
[10] Yu Y M, Wei Y M. Determinantal representation of the generalized inverse A(2)T, S over integral domains and its applications [J]. Linear and Multilinear Algebra, 2009, 57(6): 547-559.DOI:10.1080/03081080701871665.
[11] Chen Y L, Chen X Z. Representation and approximation of the outer inverse A(2)T, S of a matrix A[J]. Linear Algebra and Its Applications, 2000, 308(1/2/3): 85-107.DOI:10.1016/S0024-3795(99)00269-4.
[12] Djordjevic D, Stanimirovic P, Wei Y M. The representation and approximations of outer generalized inverses [J]. Acta Mathematica Hungarica, 2004, 104(1/2): 1-26. DOI:10.1023/b:amhu.0000034359.98588.7b.
[13] Zheng B, Wang G R. Representation and approximation for generalized inverse A(2)T, S [J]. Journal of Applied Mathematics and Computing, 2006, 22(3):225-240.DOI:10.1007/bf02832049.
[14] Wei Y M, Wu H B.(T, S)splitting methods for computing the generalized inverse A(2)T, S and rectangular systems [J].International Journal of Computer Mathematics, 2001, 77(3):401-424.DOI:10.1080/00207160108805075.
[15] Wei Y M, Wu H B. The representation and approximation for the generalized inverse A(2)T, S [J]. Applied Mathematics and Computation, 2003, 135(2/3):263-276.DOI:10.1016/S0096-3003(01)00327-7.
[16] Wei Y M. A characterization and representation of the generalized inverse A(2)T, S and its application [J]. Linear Algebra and Its Applications, 1998, 280(2/3): 87-96.DOI:10.1016/s0024-3795(98)00008-1.
[17] Ji J. Explicit expressions of generalized inverses and condensed Cramer rules [ J]. Linear Algebra and Its Applications, 2005, 404: 183-192. DOI:10.1016/j.laa.2005.02.025.
[18] Stanimirovi P S, Pappas D, Katsikis V N, et al. Full rank representations of outer inverse based on the QR decomposition [J]. Applied Mathematics and Computation, 2012, 218(20):10321-10333.DOI:10.1016/j.amc.2012.04.011.
[19] Ji J. Computing the outer and group inverses through elementary row operations[J]. Computers and Mathematics with Applications, 2014, 68(6):655-663. DOI:10.1016/j.camwa.2014.07.016.
[20] Sheng X P, Chen G L. Innovation based on Gaussian elimination to compute generalized inverse A(2)T, S [J]. Computers and Mathematics with Applications, 2013, 65(11):1823-1829.DOI:10.1016/j.camwa.2013.03.011.
[21] Stanimirovic P S, Petkovic M D. Gauss-Jordan elimination method for computing outer inverses [J]. Applied Mathematics and Computation, 2013, 219(9): 4667-4679.DOI:10.1016/j.amc.2012.10.081.

Memo

Memo:
Biographies: Sheng Xingping(1976—), male, professor, doctor; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.11771076).
Citation: Sheng Xingping, Chen Jianlong. An explicit representation and computation for the outer inverse[J].Journal of Southeast University(English Edition), 2020, 36(1):118-122.DOI:10.3969/j.issn.1003-7985.2020.01.015.
Last Update: 2020-03-20