|Table of Contents|

[1] Fu Xinghe, Fu Xiangda, Xu YutianHe Hang,. Analysis and design of excitation systemin homopolar inductor machine [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 163-169. [doi:10.3969/j.issn.1003-7985.2020.02.006]
Copy

Analysis and design of excitation systemin homopolar inductor machine()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
163-169
Research Field:
Electrical Engineering
Publishing date:
2020-06-20

Info

Title:
Analysis and design of excitation systemin homopolar inductor machine
Author(s):
Fu Xinghe Fu Xiangda Xu YutianHe Hang
School of Electrical Engineering, Southeast University, Nanjing 210096, China
Keywords:
homopolar inductor machine excitation system exciting coil axial length ratio
PACS:
TM354
DOI:
10.3969/j.issn.1003-7985.2020.02.006
Abstract:
The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system. The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM, and the distribution and characteristics of the magnetic field are described. The analytical method is applied to investigate the design process of the excitation winding. The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method. A prototype HIM is designed and manufactured, and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results. The research results show that the established design method of the excitation winding is practical and feasible. Under the conditions of constant excitation magnetomotive force or constant excitation power, the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5. The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.

References:

[1] Wang Q, Liu C J, Zou J B, et al. Numerical analysis and design optimization of a homopolar inductor machine used for flywheel energy storage[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1290-1294. DOI:10.1109/tps.2013.2243847.
[2] Tian X, Xu Y L, Wei S H. Design of a high-speed homopolar inductor machine for flywheel energy storage system[C]//2019 22nd International Conference on Electrical Machines and Systems. Harbin, China, 2019: 1-5. DOI:10.1109/icems.2019.8921705.
[3] Ye C Y, Yang J T, Xu W, et al. A novel multi-unit out-rotor homopolar inductor machine for flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5. DOI:10.1109/tmag.2018.2834956.
[4] Ye C Y, Yang J T, Liang X, et al. Investigation of a high-frequency pulsed alternator integrating motor and alternator[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2592-2602. DOI:10.1109/tie.2018.2842790.
[5] Yu K X, Yao J K, Xie X F, et al. Analysis of a novel excitation compensated homopolar inductor alternator used for capacitor charge power supply[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 5165-5171. DOI:10.1109/tps.2019.2948029.
[6] Yang J T, Ye C Y, Liang X, et al. Study of a novel high-speed compensated pulsed alternator with multistage stator cores[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2376-2381. DOI:10.1109/tps.2018.2889564.
[7] Lou Z X, Yu K X, Wang L H, et al. Two-reaction theory of homopolar inductor alternator[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 677-679. DOI:10.1109/tec.2009.2038370.
[8] Ye C Y, Yang J T, Xiong F, et al. Relationship between homopolar inductor machine and wound-field synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 919-930. DOI:10.1109/tie.2019.2898577.
[9] Bekhaled C, Hlioui S, Vido L, et al. 3D magnetic equivalent circuit model for homopolar hybrid excitation synchronous machines[C]//2007 International Aegean Conference on Electrical Machines and Power Electronics. Bodrum, Turkey, 2007:575-580. DOI:10.1109/acemp.2007.4510568.
[10] Vido L, Gabsi M, Lecrivain M, et al. Homopolar and bipolar hybrid excitation synchronous machines[C]//IEEE International Conference on Electric Machines and Drives. San Antonio, TX, USA, 2005: 1212-1218. DOI:10.1109/iemdc.2005.195876.
[11] Fu X H, Zou J B. Numerical analysis on the magnetic field of hybrid exciting synchronous generator[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4590-4593. DOI:10.1109/tmag.2009.2023625.
[12] Yang J T, Ye C Y, Huang S D, et al. Analysis of the electromagnetic performance of homopolar inductor machine through nonlinear magnetic equivalent circuit and air-gap permeance function[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 267-276. DOI:10.1109/tia.2019.2954803.
[13] Yang J T, Ye C Y, Liang X, et al. Investigation of a two-dimensional analytical model of the homopolar inductor alternator[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 5205205-1-5205205-5. DOI:10.1109/tasc.2018.2802480.
[14] Lou Z X, Yu K X, Ren Z G, et al. Analysis of homopolar inductor alternator for high reliability high power density applications[C]//2009 IEEE 6th International Power Electronics and Motion Control Conference. Wuhan, China, 2009: 841-844. DOI:10.1109/ipemc.2009.5157501.
[15] Fu X H, Lin M Y, Yu H T, et al. A novel 2-D simplified model for investigating the rotor shape of homopolar inductor alternator[C]//2012 Sixth International Conference on Electromagnetic Field Problems and Applications. Dalian, China, 2012: 1-4. DOI:10.1109/icef.2012.6310387.
[16] Orlova S, Pugachov V, Levin N, et al. Non-overlapping concentrated windings in homopolar inductor machines [C]//Proceedings of International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Pisa, Italy, 2010: 282-286. DOI: 10.1109/SPEEDAM.2010.5544764.
[17] Fu X H, Lin M Y, Yu H T, et al. Calculation and analysis of iron loss in homopolar inductor alternator[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3466-3469. DOI:10.1109/tmag.2012.2202098.
[18] Xin Q M, Yu K X, Ren Z A, et al. Inductance mathematic model of a homopolar inductor alternator in a novel pulse capacitor charge power supply[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1231-1236. DOI:10.1109/tps.2013.2251751.
[19] Ye C Y, Yang J T, Liang X, et al. Design and research of a high-speed and high-frequency pulsed alternator[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1512-1518. DOI:10.1109/tps.2017.2705984.
[20] Ren Z A, Yu K X, Xin Q M, et al. Performance of homopolar inductor alternator with diode-bridge rectifier and capacitive load[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 4891-4902. DOI:10.1109/tie.2012.2227908.
[21] Narayanan P M V, Anu G, Mini V P. Design development and performance analysis of homopolar inductor pulsed alternator[C]//2018 International CET Conference on Control, Communication, and Computing. Trivandrum, India, 2018:39-44. DOI:10.1109/cetic4.2018.8530946.

Memo

Memo:
Biography: Fu Xinghe(1978—), male, doctor, associate professor, fuxinghe@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51977035).
Citation: Fu Xinghe, Fu Xiangda, Xu Yutian, et al. Analysis and design of excitation system in homopolar inductor machine[J].Journal of Southeast University(English Edition), 2020, 36(2):163-169.DOI:10.3969/j.issn.1003-7985.2020.02.006.
Last Update: 2020-06-20