|Table of Contents|

[1] Zhang Tian, Long Xizi, Cao Xian, Li Xianning, et al. Influence evaluation of titania nanotube surface morphologyon the performance of bioelectrochemical systems [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 227-233. [doi:10.3969/j.issn.1003-7985.2020.02.014]
Copy

Influence evaluation of titania nanotube surface morphologyon the performance of bioelectrochemical systems()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
227-233
Research Field:
Environmental Science and Engineering
Publishing date:
2020-06-20

Info

Title:
Influence evaluation of titania nanotube surface morphologyon the performance of bioelectrochemical systems
Author(s):
Zhang Tian1 Long Xizi1 Cao Xian2 Li Xianning1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan
Keywords:
bioelectrochemical system titania nanotube arrays anodization current generation surface morphology
PACS:
X382
DOI:
10.3969/j.issn.1003-7985.2020.02.014
Abstract:
In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output, TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures, thereby changing the length and surface roughness of the nanotubes. When the anodizing temperature is increased from 30 to 75 ℃, the length of the nanotubes increases from 1.459 to 4.183 μm, which hinders the transfer of extracellular electrons to the electrodes. On the other hand, the surface roughness of TNA is significantly improved at higher temperatures, which is conducive to electron transfer. Therefore, samples processed at 45 ℃ have the best current output performance. Compared with the treatment at 30 ℃ under anodization, samples processed at 45 ℃ can balance the resistance and roughness and have a higher electron transfer rate; the current output density of which is increased by 1.5 times, and the decolorization rate is increased by 0.8 times. Therefore, proper TNA surface morphology can improve the current output and the potential of wastewater treatment.

References:

[1] Liu S T, Feng X J, Li X N. Bioelectrochemical approach for control of methane emission from wetlands[J]. Bioresource Technology, 2017, 241: 812-820.
[2] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
[3] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells:A critical review[J]. Energy and Environmental Science, 2008, 1(4): 417-429. DOI:10.1039/B806498A.
[4] Liang Y X, Feng H J, Shen D S, et al. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes[J]. Journal of Power Sources, 2017, 342: 98-104. DOI:10.1016/j.jpowsour.2016.12.020.
[5] Zheng X, Su Y L, Chen Y G, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J]. Environmental Science & Technology, 2014, 48(23): 13800-13807. DOI:10.1021/es504251v.
[6] Yin T, Li H, Su L, et al. The catalytic effect of TiO2 nanosheets on extracellular electron transfer of Shewanella loihica PV-4[J]. Physical Chemistry Chemical Physics, 2016, 18(43): 29871-29878. DOI:10.1039/c6cp04509j.
[7] Feng H J, Liang Y X, Guo K, et al. TiO2 nanotube arrays modified titanium: A stable, scalable, and cost-effective bioanode for microbial fuel cells[J]. Environmental Science & Technology Letters, 2016, 3(12): 420-424. DOI:10.1021/acs.estlett.6b00410.
[8] Reyes-Gil K R, Robinson D B.WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12400-12410. DOI:10.1021/am403369p.
[9] Weon S, Choi W.TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds[J]. Environmental Science & Technology, 2016, 50(5): 2556-2563. DOI:10.1021/acs.est.5b05418.
[10] Long X Z, Wang H, Wang C Q, et al. Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode[J]. Journal of Power Sources, 2019, 415: 145-153. DOI:10.1016/j.jpowsour.2019.01.069.
[11] Long X Z, Pan Q R, Wang C Q, et al. Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater[J]. Bioresource Technology, 2017, 244: 182-191. DOI:10.1016/j.biortech.2017.07.088.
[12] Anitha V C, Lee J H, Lee J, et al. Biofilm formation on a TiO2nanotube with controlled pore diameter and surface wettability[J]. Nanotechnology, 2015, 26(6): 065102. DOI:10.1088/0957-4484/26/6/065102.
[13] Huang L J, Zhang X Q, Shen D S, et al. Effect of heat-treatment atmosphere on the current generation of TiO2 nanotube array electrodes in microbial fuel cells[J]. Electrochimica Acta, 2017, 257: 203-209. DOI:10.1016/j.electacta.2017.10.068.
[14] Mo S D, Ching W Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite[J].Physical Review B, 1995, 51(19): 13023-13032. DOI:10.1103/physrevb.51.13023.
[15] Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14): 2100-2102. DOI:10.1002/anie.200462459.
[16] Varghese O K, Gong D W, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. Journal of Materials Research, 2003, 18(1): 156-165. DOI:10.1557/jmr.2003.0022.
[17] Taveira L V, Macak J M, Sirotna K, et al. Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes[J]. Journal of the Electrochemical Society, 2006, 153(4): B137-B143. DOI:10.1149/1.2172566.
[18] Katuri K P, Rengaraj S, Kavanagh P, et al. Charge transport throughGeobacter sulfurreducens biofilms grown on graphite rods[J]. Langmuir, 2012, 28(20): 7904-7913. DOI:10.1021/la2047036.
[19] Hou J X, Liu Z L, Zhang P Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224: 139-144. DOI:10.1016/j.jpowsour.2012.09.091.
[20] Wang H Y, Wang G M, Ling Y C, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J]. Nanoscale, 2013, 5(21): 10283-10290. DOI:10.1039/c3nr03487a.
[21] Katuri K P, Kavanagh P, Rengaraj S, et al. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry[J]. Chemical Communications, 2010, 46(26): 4758-4760. DOI:10.1039/c003342a.
[22] Okamoto A, Nakamura R, Nealson K H, et al. Boundflavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter[J]. ChemElectroChem, 2014, 1(11): 1808-1812. DOI:10.1002/celc.201402151.
[23] Okamoto A, Hashimoto K, Nealson K H, et al. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7856-7861. DOI:10.1073/pnas.1220823110.
[24] Jensen H M, Teravest M A, Kokish M G, et al. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli[J]. ACS Synthetic Biology, 2016, 5(7): 679-688. DOI:10.1021/acssynbio.5b00279.
[25] Hou Y P, Zhang R D, Yu Z B, et al. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell[J]. Bioresource Technology, 2017, 224: 63-68. DOI:10.1016/j.biortech.2016.10.069.
[26] Liu Y N, Zhang F, Li J, et al. Exclusive extracellular bioreduction of methyl orange by azo reductase-free geobacter sulfurreducens[J].Environmental Science & Technology, 2017, 51(15): 8616-8623. DOI:10.1021/acs.est.7b02122.
[27] Fang Z, Cao X, Li X X, et al. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238: 450-460. DOI:10.1016/j.biortech.2017.04.075.

Memo

Memo:
Biographies: Zhang Tian(1994—), female, graduate; Li Xianning(corresponding author), male, doctor, professor, lxnseu@163.com.
Foundation items: The National Major Science and Technology Project(No.2017ZX07202004-005), the Natural Science Foundation of Jiangsu Province(No.BK20171351), the Japan Society for the Promotion of Science(No.P 19056), the National Natural Science Foundation of China(No.51828801), the Fundamental Research Funds for the Central Universities(No.2242016K41042).
Citation: Zhang Tian, Long Xizi, Cao Xian, et al.Influence evaluation of titania nanotube surface morphology on the performance of bioelectrochemical systems[J].Journal of Southeast University(English Edition), 2020, 36(2):227-233.DOI:10.3969/j.issn.1003-7985.2020.02.014.
Last Update: 2020-06-20