|Table of Contents|

[1] Yan Dongdong, Wang Shuanhong,. Diagonal crossed product of multiplier Hopf algebras [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 241-244. [doi:10.3969/j.issn.1003-7985.2020.02.016]
Copy

Diagonal crossed product of multiplier Hopf algebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
241-244
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2020-06-20

Info

Title:
Diagonal crossed product of multiplier Hopf algebras
Author(s):
Yan Dongdong Wang Shuanhong
School of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
multiplier Hopf algebra bimodule algebra diagonal crossed product
PACS:
O153
DOI:
10.3969/j.issn.1003-7985.2020.02.016
Abstract:
Let A and B be two regular multiplier Hopf algebras. First, the notion of diagonal crossed product B#A of multiplier Hopf algebras is constructed using the bimodule algebra, which is a generalization of the diagonal crossed product in the sense of Hopf algebras. The result that the product in B#A is non-degenerate is given. Next, the definition of the comultiplication Δ# on B#A is introduced, which is composed of the multiplier ΔBB(b)on BB and the multiplier ΔAA(a)on AA, and the element Δ#(ba)is a two-side multiplier of B#AB#A, for any bB and aA. Then, a sufficient condition for B#A to be a regular multiplier Hopf algebra is described. In particular, Delvaux’s main theorem in the case of smash products is generalized. Finally, these integrals on a diagonal crossed product of multiplier Hopf algebras are considered.

References:

[1] Drabant B, van Daele A, Zhang Y H. Actions of multiplier Hopf algebras[J]. Communications in Algebra, 1999, 27(9): 4117-4172. DOI:10.1080/00927879908826688.
[2] van Daele A. Multiplier Hopf algebras[J]. Transactions of the American Mathematical Society, 1994, 342(2): 917-932. DOI:10.1090/s0002-9947-1994-1220906-5.
[3] Drabant B, van Daele A. Pairing and quantum double of multiplier Hopf algebras[J]. Algebras and Representation Theory, 2001, 4(2): 109-132. DOI:10.1023/A:1011470032416.
[4] van Daele A. Tools for working with multiplier Hopf algebras [J]. The Arabian Journal for Science and Engi-neering, 2008, 33(2): 505-527. DOI: 10.1017/S0954102008001338.
[5] van Daele A, Zhang Y H. Galois theory for multiplier Hopf algebras with integrals [J]. Algebras and Representation Theory, 1999, 2(1): 83-106.
[6] van Daele A, Zhang Y H. Multiplier Hopf algebras of discrete type[J]. Journal of Algebra, 1999, 214(2): 400-417. DOI:10.1006/jabr.1998.7717.
[7] Delvaux L. Semi-direct products of multiplier Hopf algebras: Smash products[J]. Communications in Algebra, 2002, 30(12): 5961-5977. DOI:10.1081/agb-120016026.
[8] Hausser F, Nill F. Diagonal crossed products by duals of quasi-quantum groups[J]. Reviews in Mathematical Physics, 1999, 11(5): 553-629. DOI:10.1142/s0129055x99000210.
[9] Zhao L H, Lu D M, Fang X L. L-R smash products for multiplier Hopf algebras[J]. Applied Mathematics—A Journal of Chinese Universities, 2008, 23(1): 83-90. DOI:10.1007/s11766-008-0112-5.
[10] van Daele A. An algebraic framework for group duality[J]. Advances in Mathematics, 1998, 140(2): 323-366. DOI:10.1006/aima.1998.1775.

Memo

Memo:
Biographies: Yan Dongdong(1992—), male, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088, 11571173, 11871144), the Natural Science Foundation of Jiangsu Province(No.BK20171348).
Citation: Yan Dongdong, Wang Shuanhong. Diagonal crossed product of multiplier Hopf algebras.[J].Journal of Southeast University(English Edition), 2020, 36(2):241-244.DOI:10.3969/j.issn.1003-7985.2020.02.016.
Last Update: 2020-06-20