|Table of Contents|

[1] Yan Yan, Xu Zhan, Wei Wei, Ni Zhonghua, et al. Numerical investigation of liquid sloshing in FLNG membranetanks with various bottom slopes [J]. Journal of Southeast University (English Edition), 2020, 36 (3): 292-300. [doi:10.3969/j.issn.1003-7985.2020.03.007]
Copy

Numerical investigation of liquid sloshing in FLNG membranetanks with various bottom slopes()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 03
Page:
292-300
Research Field:
Energy and Power Engineering
Publishing date:
2020-09-20

Info

Title:
Numerical investigation of liquid sloshing in FLNG membranetanks with various bottom slopes
Author(s):
Yan Yan1 Xu Zhan1 Wei Wei2 Ni Zhonghua1 Sun Dongke1
1 School of Mechanical and Engineering, Southeast University, Nanjing 211189, China
2 Zhangjiagang Research Institute of Hydrogen Energy Co. Ltd., Zhangjiagang 215637, China
Keywords:
liquid sloshing natural frequency sloped tank bottom volume-of-fluid method
PACS:
TE835
DOI:
10.3969/j.issn.1003-7985.2020.03.007
Abstract:
To analyze the bottom slope’s effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks, a simulation model is built and applied to describe the liquid behavior in a sloshing container. The free surface motion is simulated by the volume-of-fluid method and the standard k-ε turbulence model. Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model. To study the influence of the sloped bottom on the liquid sloshing, different slope sizes and filling ratios are numerically simulated at the lowest natural frequency. The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters. The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size. The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5% to 20%. However, the relationship between the peak pressure and slope ratio is more significant with lower filling rates. Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%). The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.

References:

[1] Faltinsen O M, Timokha A N. Sloshing [M]. Cambridge, UK: Cambridge University Press, 2009.
[2] Evans D V. The wide-spacing approximation applied to multiple scattering and sloshing problems[J].Journal of Fluid Mechanics, 1990, 210: 647-658. DOI:10.1017/s0022112090001434.
[3] Yakimov A S. Method of solution of nonlinear boundary problems[M]//Analytical Solution Methods for Boundary Value Problems. London: Academic Press, 2016: 41-85. DOI:10.1016/b978-0-12-804289-2.00003-x.
[4] Dinvay E, Kuznetsov N. Modified babenko’s equation for periodic gravity waves on water of finite depth[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 2019, 72(4): 415-428. DOI:10.1093/qjmam/hbz011.
[5] Chen H C, Taylor R L. Vibration analysis of fluid-solid systems using a finite element displacement formulation[J].International Journal for Numerical Methods in Engineering, 1990, 29(4): 683-698. DOI:10.1002/nme.1620290402.
[6] Hu J, Guo L, Sun S L. Numerical simulation of the potential flow around a submerged hydrofoil with fully nonlinear free-surface conditions[J]. Journal of Coastal Research, 2018, 341: 238-252. DOI:10.2112/jcoastres-d-16-00153.1.
[7] Zhang A M, Sun P N, Ming F R, et al. Smoothed particle hydrodynamics and its applications in fluid-structure interactions[J].Journal of Hydrodynamics, 2017, 29(2): 187-216. DOI:10.1016/s1001-6058(16)60730-8.
[8] Shamsoddini R, Abolpur B. Investigation of the effects of baffles on the shallow water sloshing in A rectangular tank using A 2D turbulent ISPH method[J]. China Ocean Engineering, 2019, 33(1): 94-102. DOI:10.1007/s13344-019-0010-z.
[9] Battaglia L, Cruchaga M, Storti M, et al. Numerical modelling of 3D sloshing experiments in rectangular tanks[J]. Applied Mathematical Modelling, 2018, 59: 357-378. DOI:10.1016/j.apm.2018.01.033.
[10] Saripilli J R, Sen D. Numerical studies on effects of slosh coupling on ship motions and derived slosh loads[J]. Applied Ocean Research, 2018, 76: 71-87. DOI:10.1016/j.apor.2018.04.009.
[11] Kim Y. Numerical simulation of sloshing flows with impact load[J].Applied Ocean Research, 2001, 23(1): 53-62. DOI:10.1016/s0141-1187(00)00021-3.
[12] Lu L, Jiang S C, Zhao M, et al. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions[J].Ocean Engineering, 2015, 108: 662-677. DOI:10.1016/j.oceaneng.2015.08.060.
[13] Li Q, Zhuang Y, Wan D C. Study on sloshing coupled motion of FLNG section in waves based on CFD method[J]. Chinese Journal of Hydrodynamics, 2019, 34(1): 28-38. DOI:10.16076/j.cnki.cjhd.2019.01.004. (in Chinese)
[14] Kawahashi T, Arai M, Wang X, et al. A study on the coupling effect between sloshing and motion of FLNG with partially filled tanks[J]. Journal of Marine Science and Technology, 2019, 24(3): 917-929. DOI:10.1007/s00773-018-0596-5.
[15] Tezdogan T, Demirel Y K, Kellett P, et al. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming[J]. Ocean Engineering, 2015, 97: 186-206. DOI:10.1016/j.oceaneng.2015.01.011.
[16] Fu J, Tang Y, Li J X, et al. Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner[J]. Applied Thermal Engineering, 2016, 93: 397-404. DOI:10.1016/j.applthermaleng.2015.09.116.
[17] Graczyk M, Berget K, Allers J. Experimental investigation of invar edge effect in membrane LNG tanks[J]. Journal of Offshore Mechanics and Arctic Engineering, 2012, 134(3): 031801-1-031801-7. DOI:10.1115/1.4005183.
[18] Rudman M, Cleary P W. Modelling sloshing in LNG tanks [C]//Seventh International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia, 2009: 1-6.
[19] Johnson M C, Savage B M. Physical andnumerical comparison of flow over ogee spillway in the presence of tailwater[J]. Journal of Hydraulic Engineering, 2006, 132(12): 1353-1357. DOI:10.1061/(asce)0733-9429(2006)132:12(1353).
[20] Lee S E, Paik J K. Pressure-impulse diagram of the FLNG tanks under sloshing loads [J].The International Journal of Marine Science and Technology, 2018, 160(A2): 109-119. DOI:10.3940/rina.ijme.2018.a2.436.
[21] Chen Z, Zong Z, Li H T, et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method[J]. Ocean Engineering, 2013, 59: 129-141. DOI:10.1016/j.oceaneng.2012.12.013.
[22] Zhao D, Hu Z, Chen G. Coupling effects of liquid loading vessels in the floating liquefied natural gas system [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 540-548.(in Chinese)
[23] Li Y L, Zhu R C, Miao G P, et al. Simulation of ship motions coupled with tank sloshing in time domain based on OpenFOAM[J]. Journal of Ship Mechanics, 2012, 16(7): 750-758.(in Chinese)
[24] Yan Y, Ni Z H, Liu X J, et al. Numerical study of bottom shape effect on pressure performance in a sloshing FLNG membrane tank[C]//Proceedings of ASME Conference on ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway, 2017. DOI:10.1115/OMAE2017-61008.

Memo

Memo:
Biographies: Yan Yan(1988—), male, doctor, lecturer; Ni Zhonghua(corresponding author), male, doctor, professor, nzh2003@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51905093), the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20180392).
Citation: Yan Yan, Xu Zhan, Wei Wei, et al.Numerical investigation of liquid sloshing in FLNG membrane tanks with various bottom slopes[J].Journal of Southeast University(English Edition), 2020, 36(3):292-300.DOI:10.3969/j.issn.1003-7985.2020.03.007.
Last Update: 2020-09-20