|Table of Contents|

[1] Hu Changhui, , Zhang Yang, et al. Centre symmetric quadruple pattern-basedillumination invariant measure [J]. Journal of Southeast University (English Edition), 2020, 36 (4): 407-413. [doi:10.3969/j.issn.1003-7985.2020.04.006]
Copy

Centre symmetric quadruple pattern-basedillumination invariant measure()
基于中心对称四重模式的光照不变度量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 4
Page:
407-413
Research Field:
Computer Science and Engineering
Publishing date:
2020-12-20

Info

Title:
Centre symmetric quadruple pattern-basedillumination invariant measure
基于中心对称四重模式的光照不变度量
Author(s):
Hu Changhui1 2 3 Zhang Yang1 2 Lu Xiaobo1 2 Liu Pan3
1School of Automation, Southeast University, Nanjing 210096, China
2Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
3School of Transportation, Southeast University, Nanjing 211189, China
胡长晖1 2 3 张扬1 2 路小波1 2 刘攀3
1东南大学自动化学院, 南京 210096; 2东南大学复杂工程系统测量与控制教育部重点实验室, 南京 210096; 3东南大学交通学院, 南京 211189
Keywords:
centre symmetric quadruple pattern illumination invariant measure severe illumination variations single sample face recognition
中心对称四重模式 光照不变度量 剧烈光照变化 单样本人脸识别
PACS:
TP391.4
DOI:
10.3969/j.issn.1003-7985.2020.04.006
Abstract:
A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition. First, the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region, which may be positive or negative. The CSQPIM model is obtained by combining the positive and negative CSQPIM units. Then, the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units. The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face. Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier, which can create the CSQPIM image-based classification(CSQPIMC). Furthermore, the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model. Finally, the experimental results on the Extended Yale B, CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.
提出了一种基于中心对称四重模式的光照不变度量(CSQPIM), 以解决严重光照变化人脸识别问题.首先, 将对数人脸局部区域中中心对称四重模式(CSQP)的像素对之差定义为CSQPIM单元, CSQPIM单元的值可能为正或负.CSQPIM模型由正负CSQPIM单元合成得到.然后, 通过控制正负CSQPIM单元的比例, CSQPIM模型可以生成多张CSQPIM图像.单张CSQPIM图像与饱和函数可以形成CSQPIM-face.多张CSQPIM图像采用扩展的稀疏表示分类(ESRC)作为分类器, 从而形成基于CSQPIM图像的分类(CSQPIMC).进一步, CSQPIM模型与预先训练的深度学习(PDL)模型集成, 以构建CSQPIM-PDL模型.最后, 在Extended Yale B, CMU PIE和Driver人脸数据库上的实验结果表明, 所提出的方法对剧烈光照变化非常有效.

References:

[1] Hu C H, Zhang Y, Wu F, et al. Toward driver face recognition in the intelligent traffic monitoring systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-14. to be published. DOI:10.1109/tits.2019.2945923.
[2] Wang B, Li W F, Yang W M, et al. Illumination normalization based on weber’s law with application to face recognition[J]. IEEE Signal Processing Letters, 2011, 18(8): 462-465. DOI:10.1109/lsp.2011.2158998.
[3] Lai Z R, Dai D Q, Ren C X, et al. Multiscale logarithm difference edgemaps for face recognition against varying lighting conditions[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1735-1747. DOI:10.1109/tip.2015.2409988.
[4] Hu C H, Lu X B, Ye M J, et al. Singular value decomposition and local near neighbors for face recognition under varying illumination[J]. Pattern Recognition, 2017, 64: 60-83. DOI:10.1016/j.patcog.2016.10.029.
[5] Horn B K P. Robot vision [M]. Cambridge, MA, USA:MIT Press, 1997.
[6] Heikkil�E4; M, Pietik�E4;inen M, Schmid C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436. DOI:10.1016/j.patcog.2008.08.014.
[7] Chakraborty S, Singh S K, Chakraborty P. Centre symmetric quadruple pattern:A novel descriptor for facial image recognition and retrieval[J]. Pattern Recognition Letters, 2018, 115: 50-58. DOI:10.1016/j.patrec.2017.10.015.
[8] Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]//Proceedings of the British Machine Vision Conference. Swansea, UK: British Machine Vision Association, 2015: 1–12. DOI:10.5244/c.29.41.
[9] Deng J K, Guo J, Xue N N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019: 4690-4699. DOI:10.1109/cvpr.2019.00482.
[10] Hu C H, Lu X B, Liu P, et al. Single sample face recognition under varying illumination via QRCP decomposition[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2624-2638. DOI:10.1109/tip.2018.2887346.
[11] Deng W H, Hu J N, Guo J. Extended SRC: Undersampled face recognition via intraclass variant dictionary[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1864-1870. DOI:10.1109/tpami.2012.30.
[12] Donoho D L, Tsaig Y. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812. DOI:10.1109/tit.2008.929958.
[13] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. DOI:10.1109/34.927464.
[14] Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618. DOI:10.1109/tpami.2003.1251154.

Memo

Memo:
Biography: Hu Changhui(1983—), male, doctor, lecturer, 101101881@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61802203), the Natural Science Foundation of Jiangsu Province(No.BK20180761), China Postdoctoral Science Foundation(No.2019M651653), Postdoctoral Research Funding Program of Jiangsu Province(No.2019K124).
Citation: Hu Changhui, Zhang Yang, Lu Xiaobo, et al.Centre symmetric quadruple pattern-based illumination invariant measure[J].Journal of Southeast University(English Edition), 2020, 36(4):407-413.DOI:10.3969/j.issn.1003-7985.2020.04.006.
Last Update: 2020-12-20