[1] Donner J S, Thompson S A, Kreuzer M P, et al. Mapping intracellular temperature using green fluorescent protein[J].Nano Letters, 2012, 12(4): 2107-2111. DOI:10.1021/nl300389y.
[2] Maksimov E G, Yaroshevich I A, Tsoraev G V, et al. A genetically encoded fluorescent temperature sensor derived from the photoactive orange carotenoid protein[J].Scientific Reports, 2019, 9: 8937. DOI:10.1038/s41598-019-45421-7.
[3] Kucsko G, Maurer P C, Yao N Y, et al. Nanometre-scale thermometry in a living cell[J].Nature, 2013, 500(7460): 54-58. DOI:10.1038/nature12373.
[4] Albers A E, Chan E M, McBride P M, et al. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells[J].Journal of the American Chemical Society, 2012, 134(23): 9565-9568. DOI:10.1021/ja302290e.
[5] Okabe K, Sakaguchi R, Shi B N, et al. Intracellular thermometry with fluorescent sensors for thermal biology[J].Pflügers Archiv—European Journal of Physiology, 2018, 470(5): 717-731. DOI:10.1007/s00424-018-2113-4.
[6] Suzuki M, Plakhotnik T. The challenge of intracellular temperature[J].Biophysical Reviews, 2020, 12(2): 593-600. DOI:10.1007/s12551-020-00683-8.
[7] Brites C D S, Lima P P, Silva N J O, et al. Thermometry at the nanoscale[J].Nanoscale, 2012, 4(16): 4799-4829. DOI:10.1039/c2nr30663h.
[8] Zhou J J, del Rosal B, Jaque D, et al. Advances and challenges for fluorescence nanothermometry[J].Nature Methods, 2020, 17(10): 967-980. DOI:10.1038/s41592-020-0957-y.
[9] Gota C, Okabe K, Funatsu T, et al. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry[J].Journal of the American Chemical Society, 2009, 131(8): 2766-2767. DOI:10.1021/ja807714j.
[10] Okabe K, Inada N, Gota C, et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J].Nature Communications, 2012, 3: 705. DOI:10.1038/ncomms1714.
[11] Suzuki M, Tseeb V, Oyama K, et al. Microscopic detection of thermogenesis in a single HeLa cell[J].Biophysical Journal, 2007, 92(6): L46-L48. DOI:10.1529/biophysj.106.098673.
[12] Wang C, Xu R, Tian W, et al. Determining intracellular temperature at single-cell level by a novel thermocouple method[J].Cell Research, 2011, 21(10): 1517-1519. DOI:10.1038/cr.2011.117.
[13] Tian W J, Wang C L, Wang J Q, et al. A high precision apparatus for intracellular thermal response at single-cell level[J].Nanotechnology, 2015, 26(35): 355501. DOI:10.1088/0957-4484/26/35/355501.
[14] Bai T T, Gu N. Micro/nanoscale thermometry for cellular thermal sensing[J].Small, 2016, 12(34): 4590-4610. DOI:10.1002/smll.201600665.
[15] Yang S, He W N, Li C, et al. A new approach of electrochemical etching fabrication based on drop-off-delay control[J].The Review of Scientific Instruments, 2019, 90(7): 074902. DOI:10.1063/1.5094470.
[16] Kallerhoff M, Karnebogen M, Singer D, et al. Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations[J].Urological Research, 1996, 24(2): 83-91. DOI:10.1007/BF00431084.
[17] Deberardinis R J, Lum J J, Hatzivassiliou G, et al. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation[J].Cell Metabolism, 2008, 7(1): 11-20. DOI:10.1016/j.cmet.2007.10.002.
[18] Inomata N, Van Toan N, Ono T. Liquid thermocouple using thermoelectric ionic liquids[J].IEEE Sensors Letters, 2019, 3(5): 1-4. DOI:10.1109/LSENS.2019.2912418.
[19] Yamamura M, Hayatsu H, Miyamae T. Heat production as a cell cycle monitoring parameter[J].Biochemical and Biophysical Research Communications, 1986, 140(1): 414-418. DOI:10.1016/0006-291X(86)91106-X.
[20] Lowell B B, Spiegelman B M. Towards a molecular understanding of adaptive thermogenesis[J].Nature, 2000, 404(6778): 652-660. DOI:10.1038/35007527.