|Table of Contents|

[1] Han Yuexia, , He Weinan, et al. Intracellular temperature measurementby a dual-thermocouple difference method [J]. Journal of Southeast University (English Edition), 2021, 37 (1): 1-7. [doi:10.3969/j.issn.1003-7985.2021.01.001]
Copy

Intracellular temperature measurementby a dual-thermocouple difference method()
基于双热电偶差值法的细胞温度测量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 1
Page:
1-7
Research Field:
Biological Science and Medical Engineering
Publishing date:
2021-03-20

Info

Title:
Intracellular temperature measurementby a dual-thermocouple difference method
基于双热电偶差值法的细胞温度测量
Author(s):
Han Yuexia1 2 3 He Weinan1 2 3 Yang Sheng1 2 3 Mao Wei1 2 3 Gu Ning1 2 3 4
1School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
2State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
3Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
4School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
韩樾夏1 2 3 何伟男1 2 3 杨升1 2 3 毛伟1 2 3 顾宁1 2 3 4
1东南大学生物科学与医学工程学院, 南京 210096; 2东南大学生物电子学国家重点实验室, 南京 210096; 3东南大学江苏省生物材料与器件重点实验室, 南京 210096; 4南京医科大学生物医学工程与信息学院, 南京 211166
Keywords:
dual-thermocouple difference thermometry intracellular temperature nanotechnology
双热电偶 差温法 细胞内温度 纳米技术
PACS:
Q28
DOI:
10.3969/j.issn.1003-7985.2021.01.001
Abstract:
A dual thermocouple difference technique is developed to determine the accuracy and anti-interference ability in the process of intracellular temperature measurement. First, two micro-nano thermocouples(TC)and a high-precision signal acquisition module are used to measure the temperature difference between the cell and the culture medium(separated about 10 μm from the cell). The cold junctions of two TCs are connected to eliminate the setting of the reference temperature and enhance the anti-interference ability. Then, a low-noise voltage amplifier and digital acquisition card are used to sample signals. In order to verify the feasibility of the dual thermocouple difference method, the temperature changes of U251 cells are detected. The calibration results of two TCs show that the Seebeck coefficient is about 5 μV/℃, and the signal acquisition accuracy is 0.5 μV in a low voltage range(0-15 μV). With the dual thermocouple difference method, errors due to the cold junctions can be removed and the interference caused by environmental temperature fluctuation can be reduced. The phenomenon of cellular temperature increase proves that the dual thermocouple difference method can detect the tiny temperature change of a single cell. The method potentially is a highly powerful technique for studying local thermogenesis of cells and helps to explore the relationship between cellular thermogenesis and cellular processes.
开发了一种双热电偶差技术来确定细胞内温度测量过程中的准确性和抗干扰能力.首先, 使用2个微纳热电偶(TC)和一个高精度信号采集模块来测量细胞与培养基之间的温度差, 并将2个TC的冷端进行连接, 避免了基准温度的设置, 增强了抗干扰能力.然后, 用低噪声电压放大器和数字采集卡对信号进行采样.为验证双热电偶差值法的可行性, 对U251电池的温度变化进行了检测.2个TC的校准结果表明塞贝克系数约为5 μV/℃, 在低电压范围(0~15 μV)内信号采集精度为0.5 μV.研究表明, 双热电偶差值法可以消除由于冷结引起的误差, 并可以减少环境温度波动引起的干扰.细胞温度升高的现象证明了双热电偶差值法可以检测到单个细胞的微小温度变化.因此, 双重热电偶差异法可能是一种强大的研究细胞局部生热的技术, 有助于探索细胞生热与细胞过程之间的关系.

References:

[1] Donner J S, Thompson S A, Kreuzer M P, et al. Mapping intracellular temperature using green fluorescent protein[J].Nano Letters, 2012, 12(4): 2107-2111. DOI:10.1021/nl300389y.
[2] Maksimov E G, Yaroshevich I A, Tsoraev G V, et al. A genetically encoded fluorescent temperature sensor derived from the photoactive orange carotenoid protein[J].Scientific Reports, 2019, 9: 8937. DOI:10.1038/s41598-019-45421-7.
[3] Kucsko G, Maurer P C, Yao N Y, et al. Nanometre-scale thermometry in a living cell[J].Nature, 2013, 500(7460): 54-58. DOI:10.1038/nature12373.
[4] Albers A E, Chan E M, McBride P M, et al. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells[J].Journal of the American Chemical Society, 2012, 134(23): 9565-9568. DOI:10.1021/ja302290e.
[5] Okabe K, Sakaguchi R, Shi B N, et al. Intracellular thermometry with fluorescent sensors for thermal biology[J].Pflügers Archiv—European Journal of Physiology, 2018, 470(5): 717-731. DOI:10.1007/s00424-018-2113-4.
[6] Suzuki M, Plakhotnik T. The challenge of intracellular temperature[J].Biophysical Reviews, 2020, 12(2): 593-600. DOI:10.1007/s12551-020-00683-8.
[7] Brites C D S, Lima P P, Silva N J O, et al. Thermometry at the nanoscale[J].Nanoscale, 2012, 4(16): 4799-4829. DOI:10.1039/c2nr30663h.
[8] Zhou J J, del Rosal B, Jaque D, et al. Advances and challenges for fluorescence nanothermometry[J].Nature Methods, 2020, 17(10): 967-980. DOI:10.1038/s41592-020-0957-y.
[9] Gota C, Okabe K, Funatsu T, et al. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry[J].Journal of the American Chemical Society, 2009, 131(8): 2766-2767. DOI:10.1021/ja807714j.
[10] Okabe K, Inada N, Gota C, et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J].Nature Communications, 2012, 3: 705. DOI:10.1038/ncomms1714.
[11] Suzuki M, Tseeb V, Oyama K, et al. Microscopic detection of thermogenesis in a single HeLa cell[J].Biophysical Journal, 2007, 92(6): L46-L48. DOI:10.1529/biophysj.106.098673.
[12] Wang C, Xu R, Tian W, et al. Determining intracellular temperature at single-cell level by a novel thermocouple method[J].Cell Research, 2011, 21(10): 1517-1519. DOI:10.1038/cr.2011.117.
[13] Tian W J, Wang C L, Wang J Q, et al. A high precision apparatus for intracellular thermal response at single-cell level[J].Nanotechnology, 2015, 26(35): 355501. DOI:10.1088/0957-4484/26/35/355501.
[14] Bai T T, Gu N. Micro/nanoscale thermometry for cellular thermal sensing[J].Small, 2016, 12(34): 4590-4610. DOI:10.1002/smll.201600665.
[15] Yang S, He W N, Li C, et al. A new approach of electrochemical etching fabrication based on drop-off-delay control[J].The Review of Scientific Instruments, 2019, 90(7): 074902. DOI:10.1063/1.5094470.
[16] Kallerhoff M, Karnebogen M, Singer D, et al. Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations[J].Urological Research, 1996, 24(2): 83-91. DOI:10.1007/BF00431084.
[17] Deberardinis R J, Lum J J, Hatzivassiliou G, et al. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation[J].Cell Metabolism, 2008, 7(1): 11-20. DOI:10.1016/j.cmet.2007.10.002.
[18] Inomata N, Van Toan N, Ono T. Liquid thermocouple using thermoelectric ionic liquids[J].IEEE Sensors Letters, 2019, 3(5): 1-4. DOI:10.1109/LSENS.2019.2912418.
[19] Yamamura M, Hayatsu H, Miyamae T. Heat production as a cell cycle monitoring parameter[J].Biochemical and Biophysical Research Communications, 1986, 140(1): 414-418. DOI:10.1016/0006-291X(86)91106-X.
[20] Lowell B B, Spiegelman B M. Towards a molecular understanding of adaptive thermogenesis[J].Nature, 2000, 404(6778): 652-660. DOI:10.1038/35007527.

Memo

Memo:
Biographies: Han Yuexia(1981—), male, doctor; Gu Ning(corresponding author), male, doctor, professor, 101001711@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2017YFA0104302), the National Natural Science Foundation of China(No.61420106012, 61821002).
Citation: Han Yuexia, He Weinan, Yang Sheng, et al. Intracellular temperature measurement by a dual-thermocouple difference method[J].Journal of Southeast University(English Edition), 2021, 37(1):1-7.DOI:10.3969/j.issn.1003-7985.2021.01.001.
Last Update: 2021-03-20